Korarchaeota

Last updated

Korarchaeota
Korarchaeota.jpg
Scanning electron micrograph of the Obsidian Pool enrichment culture, showing Korarchaeota.
Scientific classification
Domain:
Kingdom:
Superphylum:
Phylum:
"Korarchaeota"

Barns et al. 1996
Class:
"Korarchaeia"

Rinke et al. 2020 [1]
Order:
"Korarchaeales"

Petitjean et al. 2015 [2]
Family:
"Korarchaeaceae"

Rinke et al. 2020
Species
Synonyms
  • "Xenarchaea"
  • "Xenarchaeota"

The Korarchaeota is a proposed phylum within the Archaea. [3] The name is derived from the Greek noun koros or kore, meaning young man or young woman, and the Greek adjective archaios which means ancient. [4] They are also known as Xenarchaeota. The name is equivalent to Candidatus Korarchaeota, and they go by the name Xenarchaeota or Xenarchaea as well. [5]

Contents

Taxonomy

The Korarchaeota are a proposed phylum in the domain, Archaea. [6] They are thought to have diverged relatively early in the genesis of Archaea and are among the deep-branching lineages. [6] Korarchaeota are also known as Xenarchaeota. Korarchaeaota, along with Thaumarchaeota, Aigarchaeota, Crenarchaeota, belong to the superphylum called TACK. [7] The evolutionary link between Asgard archaea and Korarchaeota of TACK (Thaumarchaeota, Aigarchaeota, Crenarchaeota, Korarchaeota) is yet unknown. [7]

The first member of Korarchaeota to have its genome reconstructed was Korarchaeum crypotfilum, which was found in a hot spring in Yellowstone National Park and described in 2008. [8] Since then only a few Korarchaeal genomes have been described. [9] To check for Korarchaeota, samples from a variety of hot springs in Iceland and Kamchatka were gathered. According to the samples and analysis, the Icelandic samples contained about 87 distinct 16S ribosomal nucleic acid sequences, whereas the Kamchatkan samples contained about 33. [10]

Based on protein sequences and phylogenetic analysis of conserved single genes, the Korarchaeote was identified as a “deep archaeal lineage” with a possible relationship to the Crenarchaeota. [11] Furthermore, given the known genetic makeup of archaea, the Korarchaeota may have preserved a set of biological traits that correspond to the earliest known archaeal form. [11]

Analysis of their 16S rRNA gene sequences suggests that they are a deeply branching lineage that does not belong to the main archaeal groups, Thermoproteota and Euryarchaeota. [12] Analysis of the genome of one korarchaeote that was enriched from a mixed culture revealed a number of both Crenarchaeota- and Euryarchaeota-like features and supports the hypothesis of a deep-branching ancestry. [13]

Species

The currently accepted taxonomy is based on the List of Prokaryotic names with Standing in Nomenclature (LPSN) and National Center for Biotechnology Information (NCBI).

Listed below are the known species of Korarcheota [14] Candidatus Korarchaeota

Reference species

A strain of Korarchaeum cryptofilum was cultivated from an enrichment culture from a hot spring in Yellowstone National Park, USA and described in 2008. [13] The cells are long and needle-shaped, which gave the species its name, alluding to its "cryptical filaments". This organism lacks the genes for purine nucleotide biosynthesis and thus relies on environmental sources to meet its purine requirements. [17]

Characteristics

Korarchaeota are a proposed phylum within the domain, Archaea, and therefore exhibit characteristics such as having a cell wall without peptidoglycan, as well as lipid membranes that are ether-linked. [18] They have a surface layer of paracrystalline protein. [19] This surface layer, known as the S-layer, is densely packed and consists of 1-2 proteins form various lattice structures and are most likely what maintains the cells’ structural integrity. [18] [19] They are typically rod-shaped, however, it has been found that this morphology can change to be thicker-shaped in the presence of higher sodium dodecyl sulfate (SDS) concentrations. [20] Korarchaeota cells have an ultrathin filamentous morphology that may vary in length. [6] They typically average 15 μm in length and 0.16 μm in diameter but can be seen up to 100 μm long. [20] Some Archaea can fix carbon dioxide through the 3-hydroxypropionate/4-hydroxybutyrate pathway into organic compounds [21]

Ecology

Korarcheota have only been found in hydrothermal environments ranging from terrestrial, including hot springs [6] [22] to marine, including shallow hydrothermal vents and deep-sea hydrothermal vents. [23] Previous research has shown greater diversity of Korarchaea found in terrestrial hot springs compared to marine environments. [23] Korarchaeota have been found in nature in only low abundances. [24] [25] [26] Korarcheota likely originated in marine environments and then adapted to terrestrial ones. [27]

Geographically, Korarcheota have been found in a variety of locations around the world including Japan, Yellowstone National Park, the Gulf of California, Iceland and Russia. [18] [23]

Korarchaeota are thermophiles, having been found living in conditions of up to 128 degrees Celsius. [23] The lowest temperature they have been found in is 52 degrees Celsius. [18] While they have frequently been observed living in acidic conditions, they have also been found living in conditions up to a pH of 10. [28] [23]

Researchers have identified a virus that can potentially infect Korarcheota. [29]

Each of these six hot springs (clockwise from top left: Uzon4, Uzon7, Uzon8, Uzon9, Mut11, Mut13) in Kamchatka was found to contain Korarchaeota. KamchatkaKorHotSprings.jpg
Each of these six hot springs (clockwise from top left: Uzon4, Uzon7, Uzon8, Uzon9, Mut11, Mut13) in Kamchatka was found to contain Korarchaeota.







See also

Related Research Articles

<span class="mw-page-title-main">Carl Woese</span> American microbiologist (1928–2012)

Carl Richard Woese was an American microbiologist and biophysicist. Woese is famous for defining the Archaea in 1977 through a pioneering phylogenetic taxonomy of 16S ribosomal RNA, a technique that has revolutionized microbiology. He also originated the RNA world hypothesis in 1967, although not by that name. Woese held the Stanley O. Ikenberry Chair and was professor of microbiology at the University of Illinois Urbana–Champaign.

<span class="mw-page-title-main">Three-domain system</span> Hypothesis for classification of life

The three-domain system is a taxonomic classification system that groups all cellular life into three domains, namely Archaea, Bacteria and Eukarya, introduced by Carl Woese, Otto Kandler and Mark Wheelis in 1990. The key difference from earlier classifications such as the two-empire system and the five-kingdom classification is the splitting of Archaea from Bacteria as completely different organisms. It has been challenged by the two-domain system that divides organisms into Bacteria and Archaea only, as Eukaryotes are considered as a clade of Archaea.

<span class="mw-page-title-main">Nanoarchaeota</span> Phylum of archaea

Nanoarchaeota is a proposed phylum in the domain Archaea that currently has only one representative, Nanoarchaeum equitans, which was discovered in a submarine hydrothermal vent and first described in 2002.

<span class="mw-page-title-main">Thermoproteota</span> Phylum of archaea

The Thermoproteota are prokaryotes that have been classified as a phylum of the Archaea domain. Initially, the Thermoproteota were thought to be sulfur-dependent extremophiles but recent studies have identified characteristic Thermoproteota environmental rRNA indicating the organisms may be the most abundant archaea in the marine environment. Originally, they were separated from the other archaea based on rRNA sequences; other physiological features, such as lack of histones, have supported this division, although some crenarchaea were found to have histones. Until recently all cultured Thermoproteota had been thermophilic or hyperthermophilic organisms, some of which have the ability to grow at up to 113°C. These organisms stain Gram negative and are morphologically diverse, having rod, cocci, filamentous and oddly-shaped cells.

<span class="mw-page-title-main">Euryarchaeota</span> Phylum of archaea

Euryarchaeota is a phylum of archaea. Euryarchaeota are highly diverse and include methanogens, which produce methane and are often found in intestines, halobacteria, which survive extreme concentrations of salt, and some extremely thermophilic aerobes and anaerobes, which generally live at temperatures between 41 and 122 °C. They are separated from the other archaeans based mainly on rRNA sequences and their unique DNA polymerase.

<span class="mw-page-title-main">Chlamydiota</span> Phylum of bacteria

The Chlamydiota are a bacterial phylum and class whose members are remarkably diverse, including pathogens of humans and animals, symbionts of ubiquitous protozoa, and marine sediment forms not yet well understood. All of the Chlamydiota that humans have known about for many decades are obligate intracellular bacteria; in 2020 many additional Chlamydiota were discovered in ocean-floor environments, and it is not yet known whether they all have hosts. Historically it was believed that all Chlamydiota had a peptidoglycan-free cell wall, but studies in the 2010s demonstrated a detectable presence of peptidoglycan, as well as other important proteins.

The Thermoprotei is a class of the Thermoproteota.

<span class="mw-page-title-main">Candidatus</span> Indication in bacteriological nomenclature

In prokaryote nomenclature, Candidatus is used to name prokaryotic taxa that are well characterized but yet-uncultured. Contemporary sequencing approaches, such as 16S ribosomal RNA sequencing or metagenomics, provide much information about the analyzed organisms and thus allow to identify and characterize individual species. However, the majority of prokaryotic species remain uncultivable and hence inaccessible for further characterization in in vitro study. The recent discoveries of a multitude of candidate taxa has led to candidate phyla radiation expanding the tree of life through the new insights in bacterial diversity.

<span class="mw-page-title-main">Halobacteriales</span> Order of archaea

Halobacteriales are an order of the Halobacteria, found in water saturated or nearly saturated with salt. They are also called halophiles, though this name is also used for other organisms which live in somewhat less concentrated salt water. They are common in most environments where large amounts of salt, moisture, and organic material are available. Large blooms appear reddish, from the pigment bacteriorhodopsin. This pigment is used to absorb light, which provides energy to create ATP. Halobacteria also possess a second pigment, halorhodopsin, which pumps in chloride ions in response to photons, creating a voltage gradient and assisting in the production of energy from light. The process is unrelated to other forms of photosynthesis involving electron transport; however, and halobacteria are incapable of fixing carbon from carbon dioxide.

Aciduliprofundum is a genus of the Euryarchaeota.

<i>Methanohalophilus</i> Genus of archaea

In taxonomy, Methanohalophilus is a genus of the Methanosarcinaceae.

Halorubrum is a genus in the family Halorubraceae. Halorubrum species are usually halophilic and can be found in waters with high salt concentration such as the Dead Sea or Lake Zabuye.

<span class="mw-page-title-main">Archaea</span> Domain of single-celled organisms

Archaea is a domain of single-celled organisms. These microorganisms lack cell nuclei and are therefore prokaryotes. Archaea were initially classified as bacteria, receiving the name archaebacteria, but this term has fallen out of use.

<span class="mw-page-title-main">Nitrososphaerota</span> Phylum of archaea

The Nitrososphaerota are a phylum of the Archaea proposed in 2008 after the genome of Cenarchaeum symbiosum was sequenced and found to differ significantly from other members of the hyperthermophilic phylum Thermoproteota. Three described species in addition to C. symbiosum are Nitrosopumilus maritimus, Nitrososphaera viennensis, and Nitrososphaera gargensis. The phylum was proposed in 2008 based on phylogenetic data, such as the sequences of these organisms' ribosomal RNA genes, and the presence of a form of type I topoisomerase that was previously thought to be unique to the eukaryotes. This assignment was confirmed by further analysis published in 2010 that examined the genomes of the ammonia-oxidizing archaea Nitrosopumilus maritimus and Nitrososphaera gargensis, concluding that these species form a distinct lineage that includes Cenarchaeum symbiosum. The lipid crenarchaeol has been found only in Nitrososphaerota, making it a potential biomarker for the phylum. Most organisms of this lineage thus far identified are chemolithoautotrophic ammonia-oxidizers and may play important roles in biogeochemical cycles, such as the nitrogen cycle and the carbon cycle. Metagenomic sequencing indicates that they constitute ~1% of the sea surface metagenome across many sites.

<span class="mw-page-title-main">Bacterial phyla</span> Phyla or divisions of the domain Bacteria

Bacterial phyla constitute the major lineages of the domain Bacteria. While the exact definition of a bacterial phylum is debated, a popular definition is that a bacterial phylum is a monophyletic lineage of bacteria whose 16S rRNA genes share a pairwise sequence identity of ~75% or less with those of the members of other bacterial phyla.

Bacterial taxonomy is subfield of taxonomy devoted to the classification of bacteria specimens into taxonomic ranks.

<span class="mw-page-title-main">Eocyte hypothesis</span> Hypothesis in evolutionary biology

The eocyte hypothesis in evolutionary biology proposes that the eukaryotes originated from a group of prokaryotes called eocytes. After his team at the University of California, Los Angeles discovered eocytes in 1984, James A. Lake formulated the hypothesis as "eocyte tree" that proposed eukaryotes as part of archaea. Lake hypothesised the tree of life as having only two primary branches: prokaryotes, which include Bacteria and Archaea, and karyotes, that comprise Eukaryotes and eocytes. Parts of this early hypothesis were revived in a newer two-domain system of biological classification which named the primary domains as Archaea and Bacteria.

Nitrososphaera is a mesophilic genus of ammonia-oxidizing Crenarchaeota. The first Nitrososphaera organism was discovered in garden soils at the University of Vienna leading to the categorization of a new genus, family, order and class of Archaea. This genus is contains three distinct species: N. viennensis, Ca. N. gargensis, and Ca N. evergladensis. Nitrososphaera are chemolithoautotrophs and have important biogeochemical roles as nitrifying organisms.

Microbial DNA barcoding is the use of DNA metabarcoding to characterize a mixture of microorganisms. DNA metabarcoding is a method of DNA barcoding that uses universal genetic markers to identify DNA of a mixture of organisms.

<span class="mw-page-title-main">Two-domain system</span> Biological classification system

The two-domain system is a biological classification by which all organisms in the tree of life are classified into two big domains, Bacteria and Archaea. It emerged from development of knowledge of archaea diversity and challenges to the widely accepted three-domain system that defines life into Bacteria, Archaea, and Eukarya. It was preceded by the eocyte hypothesis of James A. Lake in the 1980s, which was largely superseded by the three-domain system, due to evidence at the time. Better understanding of archaea, especially of their roles in the origin of eukaryotes through symbiogenesis with bacteria, led to the revival of the eocyte hypothesis in the 2000s. The two-domain system became more widely accepted after the discovery of a large group (superphylum) of archaea called Asgard in 2017, which evidence suggests to be the evolutionary root of eukaryotes, implying that eukaryotes are members of the domain Archaea.

References

  1. Resolving widespread incomplete and uneven archaeal classifications based on a rank-normalized genome-based taxonomy
  2. Rooting the Domain Archaea by Phylogenomic Analysis Supports the Foundation of the New Kingdom Proteoarchaeota
  3. See the NCBI webpage on Korarchaeota. Data extracted from the "NCBI taxonomy resources". National Center for Biotechnology Information . Retrieved 2007-03-19.
  4. Elkins JG, Podar M, Graham DE, Makarova KS, Wolf Y, Randau L, et al. (June 2008). "A korarchaeal genome reveals insights into the evolution of the Archaea". Proceedings of the National Academy of Sciences of the United States of America. 105 (23): 8102–8107. Bibcode:2008PNAS..105.8102E. doi: 10.1073/pnas.0801980105 . PMC   2430366 . PMID   18535141.
  5. Boone DR, Brenner DJ, Castenholz RW, De Vos P, Garrity GM, Krieg NR, Goodfellow M (2001). Bergey's manual of systematic bacteriology (2nd ed.). New York: Springer. ISBN   978-0-387-21609-6. OCLC   619443681.
  6. 1 2 3 4 5 6 7 Elkins JG, Podar M, Graham DE, Makarova KS, Wolf Y, Randau L, et al. (June 2008). "A korarchaeal genome reveals insights into the evolution of the Archaea". Proceedings of the National Academy of Sciences of the United States of America. 105 (23): 8102–8107. Bibcode:2008PNAS..105.8102E. doi: 10.1073/pnas.0801980105 . PMC   2430366 . PMID   18535141.
  7. 1 2 Liu Y, Li M (June 2022). "The unstable evolutionary position of Korarchaeota and its relationship with other TACK and Asgard archaea". mLife. 1 (2): 218–222. doi: 10.1002/mlf2.12020 . ISSN   2770-100X. S2CID   249298036.
  8. Miller-Coleman RL, Dodsworth JA, Ross CA, Shock EL, Williams AJ, Hartnett HE, et al. (2012-05-04). "Korarchaeota diversity, biogeography, and abundance in Yellowstone and Great Basin hot springs and ecological niche modeling based on machine learning". PLOS ONE. 7 (5): e35964. doi: 10.1371/journal.pone.0035964 . PMC   3344838 . PMID   22574130.
  9. Barns SM, Delwiche CF, Palmer JD, Pace NR (August 1996). "Perspectives on archaeal diversity, thermophily and monophyly from environmental rRNA sequences". Proceedings of the National Academy of Sciences of the United States of America. 93 (17): 9188–9193. Bibcode:1996PNAS...93.9188B. doi: 10.1073/pnas.93.17.9188 . PMC   38617 . PMID   8799176.
  10. Reigstad LJ, Jorgensen SL, Schleper C (March 2010). "Diversity and abundance of Korarchaeota in terrestrial hot springs of Iceland and Kamchatka". The ISME Journal. 4 (3): 346–356. doi: 10.1038/ismej.2009.126 . PMID   19956276. S2CID   6951841.
  11. 1 2 Elkins JG, Podar M, Graham DE, Makarova KS, Wolf Y, Randau L, et al. (June 2008). "A korarchaeal genome reveals insights into the evolution of the Archaea". Proceedings of the National Academy of Sciences of the United States of America. 105 (23): 8102–8107. Bibcode:2008PNAS..105.8102E. doi: 10.1073/pnas.0801980105 . PMC   2430366 . PMID   18535141.
  12. Barns SM, Delwiche CF, Palmer JD, Pace NR (August 1996). "Perspectives on archaeal diversity, thermophily and monophyly from environmental rRNA sequences". Proceedings of the National Academy of Sciences of the United States of America. 93 (17): 9188–9193. Bibcode:1996PNAS...93.9188B. doi: 10.1073/pnas.93.17.9188 . PMC   38617 . PMID   8799176.
  13. 1 2 Elkins JG, Podar M, Graham DE, Makarova KS, Wolf Y, Randau L, et al. (June 2008). "A korarchaeal genome reveals insights into the evolution of the Archaea". Proceedings of the National Academy of Sciences of the United States of America. 105 (23): 8102–8107. Bibcode:2008PNAS..105.8102E. doi: 10.1073/pnas.0801980105 . PMC   2430366 . PMID   18535141.
  14. Schoch CL, Ciufo S, Domrachev M, Hotton CL, Kannan S, Khovanskaya R, et al. (January 2020). "NCBI Taxonomy: a comprehensive update on curation, resources and tools". Database. 2020: baaa062. doi:10.1093/database/baaa062. PMC   7408187 . PMID   32761142.
  15. 1 2 3 4 5 6 7 Schoch CL, Ciufo S, Domrachev M, Hotton CL, Kannan S, Khovanskaya R, et al. (January 2020). "NCBI Taxonomy: a comprehensive update on curation, resources and tools". Database. 2020: baaa062. doi:10.1093/database/baaa062. PMC   7408187 . PMID   32761142.
  16. 1 2 McKay LJ, Dlakić M, Fields MW, Delmont TO, Eren AM, Jay ZJ, et al. (April 2019). "Co-occurring genomic capacity for anaerobic methane and dissimilatory sulfur metabolisms discovered in the Korarchaeota". Nature Microbiology. 4 (4): 614–622. doi:10.1038/s41564-019-0362-4. OSTI   1779059. PMID   30833730. S2CID   256705892.
  17. Brown AM, Hoopes SL, White RH, Sarisky CA (December 2011). "Purine biosynthesis in archaea: variations on a theme". Biology Direct. 6: 63. doi: 10.1186/1745-6150-6-63 . PMC   3261824 . PMID   22168471.
  18. 1 2 3 4 Miller RL (January 2008). "Diversity, biogeography, and geochemical habitat of Korarchaeota in continental hot springs". UNLV Retrospective Theses & Dissertations. doi:10.25669/6h98-vit6.
  19. 1 2 Rodrigues-Oliveira T, Belmok A, Vasconcellos D, Schuster B, Kyaw CM (2017). "Archaeal S-Layers: Overview and Current State of the Art". Frontiers in Microbiology. 8: 2597. doi: 10.3389/fmicb.2017.02597 . PMC   5744192 . PMID   29312266.
  20. 1 2 Elkins JG, Kunin V, Anderson I, Barry K, Goltsman E, Lapidus A, et al. (May 2007). The Korarchaeota: Archaeal orphans representing an ancestral lineage of life (Report). Berkeley, CA (United States): Lawrence Berkeley National Lab. (LBNL). doi: 10.2172/960397 . OSTI   960397.
  21. Berg IA, Kockelkorn D, Buckel W, Fuchs G (December 2007). "A 3-hydroxypropionate/4-hydroxybutyrate autotrophic carbon dioxide assimilation pathway in Archaea". Science. 318 (5857): 1782–1786. doi:10.1126/science.1149976. PMID   18079405. S2CID   13218676.
  22. Takai K, Yoshihiko S (1 February 1999). "A molecular view of archaeal diversity in marine and terrestrial hot water environments". Microbiology Ecology. 28 (2): 177–188. doi: 10.1111/j.1574-6941.1999.tb00573.x . S2CID   84495991.
  23. 1 2 3 4 5 Reigstad LJ, Jorgensen SL, Schleper C (March 2010). "Diversity and abundance of Korarchaeota in terrestrial hot springs of Iceland and Kamchatka". The ISME Journal. 4 (3): 346–356. doi: 10.1038/ismej.2009.126 . PMID   19956276. S2CID   6951841.
  24. 1 2 Auchtung TA, Shyndriayeva G, Cavanaugh CM (January 2011). "16S rRNA phylogenetic analysis and quantification of Korarchaeota indigenous to the hot springs of Kamchatka, Russia". Extremophiles. 15 (1): 105–116. doi:10.1007/s00792-010-0340-5. PMID   21153671. S2CID   12091232.
  25. Reigstad LJ, Jorgensen SL, Schleper C (March 2010). "Diversity and abundance of Korarchaeota in terrestrial hot springs of Iceland and Kamchatka". The ISME Journal. 4 (3): 346–356. doi: 10.1038/ismej.2009.126 . PMID   19956276.
  26. Auchtung TA (2007). Ecology of the hydrothermal candidate archaeal division, Korarchaeota (PhD thesis). Harvard University.
  27. Miller-Coleman RL, Dodsworth JA, Ross CA, Shock EL, Williams AJ, Hartnett HE, et al. (2012-05-04). Mormile MR (ed.). "Korarchaeota diversity, biogeography, and abundance in Yellowstone and Great Basin hot springs and ecological niche modeling based on machine learning". PLOS ONE. 7 (5): e35964. doi: 10.1371/journal.pone.0035964 . PMC   3344838 . PMID   22574130.
  28. Marteinsson VT, Kristjánsson JK, Kristmannsdóttir H, Dahlkvist M, Saemundsson K, Hannington M, et al. (February 2001). "Discovery and description of giant submarine smectite cones on the seafloor in Eyjafjordur, northern Iceland, and a novel thermal microbial habitat". Applied and Environmental Microbiology. 67 (2): 827–833. doi:10.1128/AEM.67.2.827-833.2001. PMC   92654 . PMID   11157250.
  29. Liu Y, Brandt D, Ishino S, Ishino Y, Koonin EV, Kalinowski J, et al. (June 2019). "New archaeal viruses discovered by metagenomic analysis of viral communities in enrichment cultures". Environmental Microbiology. 21 (6): 2002–2014. doi:10.1111/1462-2920.14479. PMID   30451355. S2CID   53950297.

Further reading