Lentisphaerota | |
---|---|
Scientific classification | |
Domain: | Bacteria |
Superphylum: | PVC superphylum |
Phylum: | Lentisphaerota Cho et al. 2021 [1] |
Classes | |
Synonyms | |
|
Lentisphaerota is a phylum of bacteria closely related to Chlamydiota and Verrucomicrobiota. [2] [3]
It includes two monotypic orders Lentisphaerales and Victivallales. Phylum members can be aerobic or anaerobic and fall under two distinct phenotypes. These phenotypes live within bodies of sea water and were particularly hard to isolate in a pure culture. [4] One phenotype, L. marina, consists of terrestrial gut microbiota from mammals and birds. It was found in the Sea of Japan. [4] The other phenotype (L. araneosa) includes marine microorganisms: sequences from fish and coral microbiomes and marine sediment.
The phylogeny based on the work of the All-Species Living Tree Project. [5]
The currently accepted taxonomy is based on the List of Prokaryotic names with Standing in Nomenclature (LSPN) [6] and the National Center for Biotechnology Information (NCBI). [7]
Notes:
♠ Strain found at the National Center for Biotechnology Information (NCBI) but not listed in the List of Prokaryotic names with Standing in Nomenclature (LPSN)
Nanoarchaeota is a proposed phylum in the domain Archaea that currently has only one representative, Nanoarchaeum equitans, which was discovered in a submarine hydrothermal vent and first described in 2002.
The Aquificota phylum is a diverse collection of bacteria that live in harsh environmental settings. The name Aquificota was given to this phylum based on an early genus identified within this group, Aquifex, which is able to produce water by oxidizing hydrogen. They have been found in springs, pools, and oceans. They are autotrophs, and are the primary carbon fixers in their environments. These bacteria are Gram-negative, non-spore-forming rods. They are true bacteria as opposed to the other inhabitants of extreme environments, the Archaea.
Verrucomicrobiota is a phylum of Gram-negative bacteria that contains only a few described species. The species identified have been isolated from fresh water, marine and soil environments and human faeces. A number of as-yet uncultivated species have been identified in association with eukaryotic hosts including extrusive explosive ectosymbionts of protists and endosymbionts of nematodes from genus Xiphinema, residing in their gametes. The verrucomicrobial bacterium Akkermansia muciniphila is a human intestinal symbiotic bacterium that is considered as a promising probiotic.
The Thermoprotei is a class of the Thermoproteota.
Thermoproteales are an order of archaeans in the class Thermoprotei. They are the only organisms known to lack the SSB proteins, instead possessing the protein ThermoDBP that has displaced them. The rRNA genes of these organisms contain multiple introns, which can be homing endonuclease encoding genes, and their presence can impact the binding of "universal" 16S rRNA primers often used in environmental sequencing surveys.
Methanobrevibacter is a genus of archaeans in the family Methanobacteriaceae. The species within Methanobrevibacter are strictly anaerobic archaea that produce methane, for the most part through the reduction of carbon dioxide via hydrogen. Most species live in the intestines of larger organisms, such as termites and are responsible for the large quantities of greenhouse gases that they produce.
The phylum Elusimicrobiota, previously known as "Termite Group 1", has been shown to be widespread in different ecosystems like marine environment, sewage sludge, contaminated sites and soils, and toxic wastes. The high abundance of Elusimicrobiota representatives is only seen for the lineage of symbionts found in termites and ants.
The Negativicutes are a class of bacteria in the phylum Bacillota, whose members have a peculiar cell wall with a lipopolysaccharide outer membrane which stains gram-negative, unlike most other members of the Bacillota. Although several neighbouring Clostridia species also stain gram-negative, the proteins responsible for the unusual diderm structure of the Negativicutes may have actually been laterally acquired from Pseudomonadota. Additional research is required to confirm the origin of the diderm cell envelope in the Negativicutes.
Armatimonadota is a phylum of gram-negative bacteria.
The Cryptosporangiaceae are the only family of the order Cryptosporangiales, which is a part of the phylum Actinomycetota.
The Kineosporiaceae is a family of Gram positive bacteria.
The Thermoanaerobacteraceae is a highly polyphyletic family of bacteria placed within the class clostridia. Originally placed within the highly polyphyletic class Clostridia and order Thermoanaerobacterales, according to the NCBI and LPSN, it is now thought to be a basal clade of the phylum Bacillota.
Ruaniaceae is an Actinomycete family with two monotypic genera.
Beutenbergiaceae is an Actinomycete family.
Bogoriellaceae is an Actinomycete family.
Thermomonosporaceae is a family of bacteria that share similar genotypic and phenotypic characteristics. The family Thermomonosporaceae includes aerobic, Gram-positive, non-acid-fast, chemo-organotrophic Actinomycetota. They produce a branched substrate mycelium bearing aerial hyphae that undergo differentiation into single or short chains of arthrospores. All species of Thermomonosporaceae share the same cell wall type, a similar menaquinone profile in which MK-9(H6)is predominant, and fatty acid profile type 3a. The presence of the diagnostic sugar madurose is variable, but can be found in most species of this family. The polar lipid profiles are characterized as phospholipid type PI for most species of Thermomonospora, Actinomadura and Spirillospora. The members of Actinocorallia are characterized by phospholipid type PII.
Victivallis vadensis is a Gram-negative, coccus-shaped, bacteria found in the human digestive tract. It measures approximately 0.5-1.3 micrometers in diameter, is non-motile and chemoorganotrophic, and does not form spores. Victivallis vadensis is strictly anaerobic, as are 90 percent of the bacteria in the human gastrointestinal system.
Lentisphera araneosa is a marine bacteria strain in the bacterial phylum Lentisphaerota. They are able to produce viscous transparent exopolymers and grow attached to each other by the polymer in a three-dimensional configuration. They are part of the natural surface bacterial population in the Atlantic and Pacific oceans. They are less than 1% of the total bacterial community. This species is gram negative, non-motile, non-pigmented, aerobic, chemoheterotrophic, and facultatively oligotrophic sphere-shaped. Its genome has been sequenced.
The Coriobacteriia are a class of Gram-positive bacteria within the Actinomycetota phylum. Species within this group are nonsporulating, strict or facultative anaerobes that are capable of thriving in a diverse set of ecological niches. Gordonibacter species are the only members capable of motility by means of flagella within the class. Several species within the Coriobacteriia class have been implicated with human diseases that range in severity. Atopobium, Olsenella, and Cryptobacterium species have responsible for human oral infections including periodontitis, halitosis, and other endodontic infections. Eggerthella species have been associated with severe blood bacteraemia and ulcerative colitis.
The Thermoanaerobaculia is a class of Acidobacteriota.
{{cite journal}}
: CS1 maint: numeric names: authors list (link)