CRuMs

Last updated

CRuMs
Collodictyon pseudopodoa (extracted).jpg
Collodictyon pseudopodoa
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Clade: Opimoda
Clade: Podiata
Clade: CRuMs
Brown et al. 2018 [1]
Orders
Synonyms
  • CrumaliaZmitrovich, Perelygin & Zharikov 2022 [2]
  • Varisulca Cavalier-Smith 2013 emend. 2021 [3]

CRuMs or Crumalia [2] is a proposed clade of microbial eukaryotes, whose name is an acronym of the following constituent groups: i) collodictyonids also known as diphylleids, ii) rigifilids and iii) mantamonadids as sister of the Amorphea. [4] [1] It more or less supersedes Varisulca, as Ancyromonadida are inferred not to be specifically related to the orders Diphylleida/Collodictyonida, Rigifilida and Mantamonadida.

Phylogeny

Opimoda

Ancyromonadida Cavalier-Smith 1998 emend. Atkins 2000

Malawimonadea Cavalier-Smith 2003

Amorphea

Amoebozoa Lühe 1913 emend. Cavalier-Smith 1998

Obazoa

Breviatea Cavalier-Smith 2004

Apusomonadida Karpov & Mylnikov 1989

Opisthokonta (inc. fungi & animals)

CRuMs [1]

Mantamonadida Cavalier-Smith 2004

Rigifilida Karpov & Mylnikov 1989

Diphylleida Cavalier-Smith 1993

Related Research Articles

<span class="mw-page-title-main">Excavata</span> Supergroup of unicellular organisms belonging to the domain Eukaryota

Excavata is an extensive and diverse but possibly paraphyletic group of unicellular Eukaryota. The group was first suggested by Simpson and Patterson in 1999 and the name latinized and assigned a rank by Thomas Cavalier-Smith in 2002. It contains a variety of free-living and symbiotic protists, and includes some important parasites of humans such as Giardia and Trichomonas. Excavates were formerly considered to be included in the now obsolete Protista kingdom. They were distinguished from other lineages based on electron-microscopic information about how the cells are arranged. They are considered to be a basal flagellate lineage.

<span class="mw-page-title-main">Chromista</span> Eukaryotic biological kingdom

Chromista is a proposed but polyphyletic biological kingdom consisting of single-celled and multicellular eukaryotic species that share similar features in their photosynthetic organelles (plastids). It includes all eukaryotes whose plastids contain chlorophyll c and are surrounded by four membranes. If the ancestor already possessed chloroplasts derived by endosymbiosis from red algae, all non-photosynthetic Chromista have secondarily lost the ability to photosynthesise. Its members might have arisen independently as separate evolutionary groups from the last eukaryotic common ancestor.

<span class="mw-page-title-main">Amorphea</span> Members of the Unikonta, a taxonomic group proposed by Thomas Cavalier-Smith

Amorphea is a taxonomic supergroup that includes the basal Amoebozoa and Obazoa. That latter contains the Opisthokonta, which includes the Fungi, Animals and the Choanomonada, or Choanoflagellates. The taxonomic affinities of the members of this clade were originally described and proposed by Thomas Cavalier-Smith in 2002.

<span class="mw-page-title-main">Hemimastigophora</span> Group of single-celled organisms

Hemimastigophora is a group of single-celled eukaryotic organisms including the Spironemidae, first identified in 1988. Over the next 30 years, different authors proposed placing these organisms in various branches of the eukaryotes. In 2018 Lax et al. reported the first genetic information for Spironemidae, and suggest that they are from an ancient lineage of eukaryotes which constitute a separate clade from all other eukaryotic kingdoms. It is potentially related to the Telonemia.

<span class="mw-page-title-main">Spironemidae</span> Family of heterotrophic flagellates, in the group Hemimastigophora

Spironemidae is a family of heterotrophic flagellates, in the group Hemimastigophora. They vary in size and shape from the ellipsoid Hemimastix amphikineta to the vermiform Spironema terricola, and are united by the possession of two rows of cilia, called kineties.

<span class="mw-page-title-main">Archaeplastida</span> Clade of eukaryotes containing land plants and some algae

The Archaeplastida are a major group of eukaryotes, comprising the photoautotrophic red algae (Rhodophyta), green algae, land plants, and the minor group glaucophytes. It also includes the non-photosynthetic lineage Rhodelphidia, a predatorial (eukaryotrophic) flagellate that is sister to the Rhodophyta, and probably the microscopic picozoans. The Archaeplastida have chloroplasts that are surrounded by two membranes, suggesting that they were acquired directly through a single endosymbiosis event by feeding on a cyanobacterium. All other groups which have chloroplasts, besides the amoeboid genus Paulinella, have chloroplasts surrounded by three or four membranes, suggesting they were acquired secondarily from red or green algae. Unlike red and green algae, glaucophytes have never been involved in secondary endosymbiosis events.

<span class="mw-page-title-main">Malawimonadidae</span>

Malawimonadidae is a family of unicellular eukaryotes of outsize importance in understanding eukaryote phylogeny.

<i>Breviata</i>

Breviata anathema is a single-celled flagellate amoeboid eukaryote, previously studied under the name Mastigamoeba invertens. The cell lacks mitochondria, but has remnant mitochondrial genes, and possesses an organelle believed to be a modified anaerobic mitochondrion, similar to the mitosomes and hydrogenosomes found in other eukaryotes that live in low-oxygen environments.

<span class="mw-page-title-main">Loukozoa</span> Proposed taxon

Loukozoa is a proposed taxon used in some classifications of eukaryotes, consisting of the Metamonada and Malawimonadea. Ancyromonads are closely related to this group, as sister of the entire group, or as sister of the Metamonada. Amorphea may have emerged in this grouping, specifically as sister of the Malawimonads.

<i>Malawimonas</i> Genus of micro-organisms

Malawimonas is genus of unicellular, heterotrophic flagellates with uncertain phylogenetic affinities. They have variably being assigned to Excavata and Loukozoa. Recent studies suggest they may be closely related to the Podiata.

<span class="mw-page-title-main">Ancyromonadida</span> Group of protists

Ancyromonadida or Planomonadida is a small group of biflagellated protists found in the soil and in aquatic habitats, where they feed on bacteria. Includes freshwater or marine organisms, benthic, dorsoventrally compressed and with two unequal flagellae, each emerging from a separate pocket. The apical anterior flagellum can be very thin or end in the cell membrane, while the posterior flagellum is long and is inserted ventrally or laterally. The cell membrane is supported by a thin single-layered theca and the mitochondrial crests are discoidal/flat.

<span class="mw-page-title-main">Diaphoretickes</span> Taxon of eukaryotes

Diaphoretickes is a major group of eukaryotic organisms, with over 400,000 species. The majority of the earth's biomass that carries out photosynthesis belongs to Diaphoretickes.

<span class="mw-page-title-main">Eukaryote</span> Domain of life whose cells have nuclei

The eukaryotes constitute the domain of Eukarya, organisms whose cells have a membrane-bound nucleus. All animals, plants, fungi, and many unicellular organisms are eukaryotes. They constitute a major group of life forms alongside the two groups of prokaryotes: the Bacteria and the Archaea. Eukaryotes represent a small minority of the number of organisms, but due to their generally much larger size, their collective global biomass is much larger than that of prokaryotes.

<span class="mw-page-title-main">Picozoa</span> Phylum of marine unicellular heterotrophic eukaryotes

Picozoa, Picobiliphyta, Picobiliphytes, or Biliphytes are protists of a phylum of marine unicellular heterotrophic eukaryotes with a size of less than about 3 micrometers. They were formerly treated as eukaryotic algae and the smallest member of photosynthetic picoplankton before it was discovered they do not perform photosynthesis. The first species identified therein is Picomonas judraskeda. They probably belong in the Archaeplastida as sister of the Rhodophyta.

<span class="mw-page-title-main">Collodictyonidae</span> Family of aquatic microorganisms

Collodictyonidae is a group of aquatic, unicellular eukaryotic organisms with two to four terminal flagella. They feed by phagocytosis, ingesting other unicellular organisms like algae and bacteria. The most remarkable fact of this clade is its uncertain position in the tree of life.

<span class="mw-page-title-main">Podiata</span> Clade of shelled animals

Podiates are a proposed clade containing the Amorphea and the organisms now assigned to the clade CRuMs. Ancyromonadida does not appear to have emerged in this grouping. Sarcomastigota is a proposed subkingdom that includes all the podiates that are not animals or fungi. Sulcozoa is a proposed phylum within Sarcomastigota that does not include the phyla Amoebozoa (clade) and Choanozoa (paraphyletic), i.e. it includes the proposed subphyla Apusozoa and Varisulca

<span class="mw-page-title-main">Cryptista</span> Phylum of algae

Cryptista is a clade of alga-like eukaryotes. It is most likely related to Archaeplastida which includes plants and many algae, within the larger group Diaphoretickes.

<span class="mw-page-title-main">Obazoa</span> Proposed group of single-celled organisms

Obazoa is a proposed sister clade of Amoebozoa. The term Obazoa is based on the OBA acronym for Opisthokonta, Breviatea, and Apusomonadida, the group's three constituent clades.

A supergroup, in evolutionary biology, is a large group of organisms that share one common ancestor and have important defining characteristics. It is an informal, mostly arbitrary rank in biological taxonomy that is often greater than phylum or kingdom, although some supergroups are also treated as phyla.

<span class="mw-page-title-main">Malawimonad</span> Order of flagellates

Malawimonads are a small group of microorganisms with a basal position in the evolutionary tree of eukaryotes, containing only three recognized species. They're considered part of a possibly paraphyletic group known as "Excavata".

References

  1. 1 2 3 Brown, Matthew W.; Heiss, Aaron A.; Kamikawa, Ryoma; Inagaki, Yuji; Yabuki, Akinori; Tice, Alexander K; Shiratori, Takashi; Ishida, Ken-Ichiro; Hashimoto, Tetsuo; Simpson, Alastair; Roger, Andrew (2018-01-19). "Phylogenomics Places Orphan Protistan Lineages in a Novel Eukaryotic Super-Group". Genome Biology and Evolution. 10 (2): 427–433. doi:10.1093/gbe/evy014. PMC   5793813 . PMID   29360967.
  2. 1 2 Zmitrovich, Ivan V.; Perelygin, Vladimir; Zharikov, Mikhail V. (2022). "Nomenclature and rank correlation of higher taxa of eukaryotes". Folia Cryptogamica Petropolitana. INFRA-M, Moscow. ISBN   978-5-16-018531-6.
  3. Cavalier-Smith T (December 2021). "Ciliary transition zone evolution and the root of the eukaryote tree: implications for opisthokont origin and classification of kingdoms Protozoa, Plantae, and Fungi". Protoplasma. 259: 487–593. doi:10.1007/s00709-021-01665-7. PMC   9010356 .
  4. Lax, Gordon; Eglit, Yana; Eme, Laura; Bertrand, Erin M.; Roger, Andrew J.; Simpson, Alastair G. B. (2018-11-14). "Hemimastigophora is a novel supra-kingdom-level lineage of eukaryotes". Nature. 564 (7736): 410–414. Bibcode:2018Natur.564..410L. doi:10.1038/s41586-018-0708-8. PMID   30429611. S2CID   205570993.