Collodictyon

Last updated

Collodictyon
Collodictyon anterior view, showing sulcus, nucleus, blepharoplast, rhizoplast, and four flagella..jpg
Collodictyon, with nucleus and four flagella (view from the rear)
Scientific classification
(incertae sedis within Eukaryota)
Domain:
(unranked):
Class:
Order:
Family:
Genus:
Collodictyon

Carter 1865
Type species
Collodictyon triciliatum
Carter 1865
Species
  • C. hongkongense
  • C. indicum
  • C. sparsevacuolatum
  • C. triciliatum

Collodictyon is a genus of single-celled, omnivorous eukaryotes belonging to the collodictyonids, also known as diphylleids. [1] [2] Due to their mix of cellular components, Collodictyonids do not belong to any well-known kingdom-level grouping of that domain and this makes them distinctive from other families. [3] [4] Recent research places them in a new 'supergroup' together with rigifilids and Mantamonas, with the so-far informal name 'CRuMs'. [5]

Contents

Taxonomy and phylogeny

Eukaryotes
Phylogenetic position of Collodictyon relative to a few example organisms [1]

Four species are currently recognised in this genus. The type species is Collodictyon triciliatum . A second speciesCollodictyon sparsevacuolatumnamed by Skuja is also recognised; this species is found in freshwater in the United States and Europe. A third species Collodictyon sphaericum has been described but its description is in doubt and reclassified as Quadricilia rotundata(Skuja 1948) Vørs 1992. A fourth speciesCollodictyon hongkongensehas been described by Skvortzow but this description is considered inadequate and this species is regarded as being of dubious validity. [6]

Along with the genus Diphylleia , this organism appears to be only distantly related to the other eukaryotes. [1] [7] They share some morphological features with the species currently placed within Excavata due to the fact that the Collodictyon sulcus is similar because it also contains a supporting structure from left and right microtubular roots that line the entirety of the lips of the Sulcus. [8] [9] However this latter clade is considered to be polyphyletic and in need of resolution (reorganisation into different groups). For this reason inclusion of this genus within the excavates may not assist in understanding its phylogenetic position. They also share similar features as Amoebozoa because the feeding groove of Collodictyon also form pseudopods at the base which have a related function to the pseudopods in Amoebozoa. [10] The pseudopods in both Amoebozoa and Collodictyon are used in order to catch prey.

Brugerolle has proposed a family, Collodictyonidae for this genus and Diphylleia. [8]

Another genus that is related to Collodictyon is Sulcomonas .

Scientists speculate that further study of Collodictyon may yield insights into the prehistoric beginnings of life hundreds of millions of years ago. [3] Scientists from Norway have been studying a particular type of Collodictyon found living in sludge in Årungen, a lake in the municipality of Ås in Norway. [3] [11] Kamran Shalchian-Tabrizi, the leader of the Microbial Evolution Research Group (MERG), has claimed that these organisms resemble the basal eukaryote. [3]

Collodictyonids were placed by Cavalier-Smith in Varisulca, [12] but this grouping appears to be paraphyletic.

Description

The species in this genus range in size from 30 to 50  µm in length, [3] can grow broad pseudopodia, and have four flagella [3] and a ventral feeding groove which divides the organism longitudinally called the Sulcus. [1] They are devoid of cellulosic cell walls, chloroplasts or stigmata. There are two to several contractile vacuoles.

The cell shape is variable but is mostly obovoid to ellipsoid. The lateral cell margins maybe somewhat angular leading to a broad, truncated rounded apex. This posterior margin narrows posteriorly and either bears 1-3 lobes or is simply broadly rounded. This margin is often pseudopodial.

The nucleus typically lies in the posterior half of the cell.

Joining of the Sulcus during Prophase Collodictyon telophase constrict.jpg
Joining of the Sulcus during Prophase

The mitochondria have tubular cristae.

Sketch of Collodictyon. Collodictyon.png
Sketch of Collodictyon.

Organelles called dictyosomes are present and arranged in a horseshoe like shape. [8]

Members of this genus are known to reproduce asexually through cell division. Whether sexual reproduction occurs is currently unknown.

Collodictyon triciliatum has four flagella connected to basal bodies, generally of equal length, as long as or slightly longer than the body of Collodictyon. [2] Number one flagellum is connected to a dorsal root, while number two flagellum is connected to a ventral root. Number three and four flagella are on either side of these two and have dorsal roots.

Distribution

Originally Collodictyon triciliatum was described from the island of Bombay and later in central Europe. [13] [14] In Europe this species is found from Spain [15] to Norway. [1] Collodictyon has also been reported in North America. [6] [14] [16]

Feeding

Diagram of Collodictyon failed ingestion of a Pandorina. The Pandorina escapes and the Collodictyon dies from water loss. Sketched by researcher Robert Clinton Rhodes; sketch appeared in print in 1917. Collodictyon meets Pandorina.jpg
Diagram of Collodictyon failed ingestion of a Pandorina . The Pandorina escapes and the Collodictyon dies from water loss. Sketched by researcher Robert Clinton Rhodes; sketch appeared in print in 1917.

The feeding habits of this organism have rarely been studied.

In its feeding habits, Collodictyon is most interesting. When hungry, it can be distinguished from moribund stages in which all food is extruded by pseudopial projections from the lateral groove or sulcal region ... these pseudopodia ... function actively whenever the organism is seeking food. At these times when coming in contact with Protozoa or algae which it may use for food, they are wafted to the sulcal region by the flagella, or else Collodictyon aligns itself alongside of its prey with the pseudopodia in contact. ... Both the flagella and the pseudopodia appear sensitive to food stimulus ...

Robert Clinton Rhodes, 1917 [17]

Dag Klaveness reported that the creatures are "not sociable" and will cannibalize each other when food is scarce. [3] Collodictyon will ingest freshwater algae and appears to be unable to survive on a diet of bacteria alone. Curiously the algae remain viable at least for a while after being engulfed. It is possible that the algae are "enslaved". [17]

History

Collodictyon triciliatum was originally named by H. J. Carter in 1865. [13] Carter's original species description is as follows:

Pyriform, straight, or slightly bent upon itself, bifid (two-lobed) at the small extremity, presenting at the larger one an indentation, from which spring three cilia. Structure transparent, cancellated, composed of globular cells, with a strongly marked, greenish granule here and there in the triangular spaces between them. Locomotive, swimming by means of the cilia; subpolymorphic, flexible, yielding, capable of assuming a globular form ... or one more or less modified by the body it may incept . . . ; enclosing crude material for nourishment in stomachal spaces, and ejecting the refuse, like Amoeba. Provided with a nucleus and contracting vesicles.

Carter, 1865 [14]

In 1917, it was classified as being one of the "simplest and most primitive" type of Polymastigina . [18]

See also

Related Research Articles

<span class="mw-page-title-main">Flagellate</span> Group of protists with at least one whip-like appendage

A flagellate is a cell or organism with one or more whip-like appendages called flagella. The word flagellate also describes a particular construction characteristic of many prokaryotes and eukaryotes and their means of motion. The term presently does not imply any specific relationship or classification of the organisms that possess flagella. However, the term "flagellate" is included in other terms which are more formally characterized.

<span class="mw-page-title-main">Glaucophyte</span> Division of algae

The glaucophytes, also known as glaucocystophytes or glaucocystids, are a small group of unicellular algae found in freshwater and moist terrestrial environments, less common today than they were during the Proterozoic. The stated number of species in the group varies from about 14 to 26. Together with the red algae (Rhodophyta) and the green algae plus land plants, they form the Archaeplastida.

<span class="mw-page-title-main">Unicellular organism</span> Organism that consists of only one cell

A unicellular organism, also known as a single-celled organism, is an organism that consists of a single cell, unlike a multicellular organism that consists of multiple cells. Organisms fall into two general categories: prokaryotic organisms and eukaryotic organisms. Most prokaryotes are unicellular and are classified into bacteria and archaea. Many eukaryotes are multicellular, but some are unicellular such as protozoa, unicellular algae, and unicellular fungi. Unicellular organisms are thought to be the oldest form of life, with early protocells possibly emerging 3.8–4.8 billion years ago.

<span class="mw-page-title-main">Amoebozoa</span> Phylum of protozoans

Amoebozoa is a major taxonomic group containing about 2,400 described species of amoeboid protists, often possessing blunt, fingerlike, lobose pseudopods and tubular mitochondrial cristae. In traditional classification schemes, Amoebozoa is usually ranked as a phylum within either the kingdom Protista or the kingdom Protozoa. In the classification favored by the International Society of Protistologists, it is retained as an unranked "supergroup" within Eukaryota. Molecular genetic analysis supports Amoebozoa as a monophyletic clade. Modern studies of eukaryotic phylogenetic trees identify it as the sister group to Opisthokonta, another major clade which contains both fungi and animals as well as several other clades comprising some 300 species of unicellular eukaryotes. Amoebozoa and Opisthokonta are sometimes grouped together in a high-level taxon, variously named Unikonta, Amorphea or Opimoda.

<span class="mw-page-title-main">Lobosa</span> Phylum of protozoans

Lobosa is a taxonomic group of amoebae in the phylum Amoebozoa. Most lobosans possess broad, bluntly rounded pseudopods, although one genus in the group, the recently discovered Sapocribrum, has slender and threadlike (filose) pseudopodia. In current classification schemes, Lobosa is a subphylum, composed mainly of amoebae that have lobose pseudopods but lack cilia or flagella.

<span class="mw-page-title-main">Amorphea</span> Members of the Unikonta, a taxonomic group proposed by Thomas Cavalier-Smith

Amorphea is a taxonomic supergroup that includes the basal Amoebozoa and Obazoa. That latter contains the Opisthokonta, which includes the Fungi, Animals and the Choanomonada, or Choanoflagellates. The taxonomic affinities of the members of this clade were originally described and proposed by Thomas Cavalier-Smith in 2002.

<i>Chaos</i> (genus) Genus of microscopic organisms

Chaos is a genus of single-celled amoeboid organisms in the family Amoebidae. The largest and most-known species, the so-called "giant amoeba", can reach lengths up to 5 mm, although most specimens fall between 1 and 3 mm.

<i>Amoeba proteus</i> Species of amoeba

Amoeba proteus is a large species of amoeba closely related to another genus of giant amoebae, Chaos. As such, the species is sometimes given the alternative scientific name Chaos diffluens.

<i>Cafeteria roenbergensis</i> Species of single-celled organism

Cafeteria roenbergensis is a small bacterivorous marine flagellate. It was discovered by Danish marine ecologist Tom Fenchel and named by him and taxonomist David J. Patterson in 1988. It is in one of three genera of bicosoecids, and the first discovered of two known Cafeteria species. Bicosoecids belong to a broad group, the stramenopiles, also known as heterokonts (Heterokonta) that includes photosynthetic groups such as diatoms, brown, and golden algae, and non-photosynthetic groups such as opalinids, actinophryid "heliozoans", and oomycetes. The species is found primarily in coastal waters where there are high concentrations of bacteria on which it grazes. Its voracious appetite plays a significant role in regulating bacteria populations.

Polychaos dubium is a freshwater amoeboid and one of the larger species of single-celled eukaryote. Like other amoebozoans, P. dubium moves by means of temporary projections called pseudopods. P. dubium reportedly has one of the largest genome size of any organism known, though the authors of a 2004 study suggest treating that measurement with caution.

<span class="mw-page-title-main">Protozoan infection</span> Parasitic disease caused by a protozoan

Protozoan infections are parasitic diseases caused by organisms formerly classified in the kingdom Protozoa. These organisms are now classified in the supergroups Excavata, Amoebozoa, Harosa, and Archaeplastida. They are usually contracted by either an insect vector or by contact with an infected substance or surface.

<i>Amoeba</i> (genus) Genus of Protozoa

Amoeba is a genus of single-celled amoeboids in the family Amoebidae. The type species of the genus is Amoeba proteus, a common freshwater organism, widely studied in classrooms and laboratories.

<i>Phalansterium</i> Genus of single-celled organisms

Phalansterium is a genus of single-celled flagellated organisms comprising several species, which form colonies. Phalansterium produces tetraspores.

<span class="mw-page-title-main">Testate amoebae</span>

Testate amoebae are a polyphyletic group of unicellular amoeboid protists, which differ from naked amoebae in the presence of a test that partially encloses the cell, with an aperture from which the pseudopodia emerge, that provides the amoeba with shelter from predators and environmental conditions.

<i>Amastigomonas</i> Genus of protozoa with two flagella

Amastigomonas is a genus of protists belonging to a lineage of biciliated zooflagellates known as Apusomonadida. It was first described in 1931 by Henri de Saedeleer. The current use of Amastigomonas is as a descriptive archetype, with no phylogenetic or taxonomic implications. The term "Amastigomonas-like" is used to refer to all apusomonads that lack the 'derived' characteristics of Apusomonas.

<span class="mw-page-title-main">Collodictyonidae</span> Family of aquatic microorganisms

Collodictyonidae is a group of aquatic, unicellular eukaryotic organisms with two to four terminal flagella. They feed by phagocytosis, ingesting other unicellular organisms like algae and bacteria. The most remarkable fact of this clade is its uncertain position in the tree of life.

Rigifila is a genus of free-living single-celled eukaryotes, or protists, containing the sole species Rigifila ramosa. It is classified within the monotypic family Rigifilidae. Along with Micronucleariidae, it is a member of Rigifilida, an order of basal eukaryotes within the CRuMs clade. It differs from Micronuclearia by having two proteic layers surrounding their cytoplasm instead of a single one, and having more irregular mitochondrial cristae, among other morphological differences.

<span class="mw-page-title-main">Amoeba</span> Cellular body type

An amoeba, often called an amoeboid, is a type of cell or unicellular organism with the ability to alter its shape, primarily by extending and retracting pseudopods. Amoebae do not form a single taxonomic group; instead, they are found in every major lineage of eukaryotic organisms. Amoeboid cells occur not only among the protozoa, but also in fungi, algae, and animals.

<span class="mw-page-title-main">Varisulca</span> Proposed phylum of protists

Varisulca was a proposed basal Podiate taxon. It encompassed several lineages of heterotrophic protists, most notably the ancyromonads (planomonads), collodictyonids (diphylleids), rigifilids and mantamonadids. Recent evidence suggests that the latter three are closely related to each other, forming a clade called CRuMs, but that this is unlikely to be specifically related to ancyromonads

Torodinium (ˌtɔɹoʊˈdɪniəm) is a genus of unarmored dinoflagellates and comprises two species, Torodinium robustum and the type species Torodinium teredo. The establishment of Torodinium, as well as the characterization of the majority of its morphology, occurred in 1921 and further advances since have been slow. Lack of research is largely due to its extremely fragile and easily deformed nature, which also renders fossil records implausible. The genus was originally characterized by torsion of the sulcus and a posterior cingulum. Since then, new distinctive features have been discovered including an extremely reduced hyposome, a longitudinally ribbed episome, and a canal on the dextro-lateral side. Further investigation into the function of many anatomical features is still necessary for this genus.

References

  1. 1 2 3 4 5 Zhao, Sen; Fabien Burki; Jon Bråte; Patrick Keeling; Dag Klaveness; Kamran Shalchian-Tabrizi (2012-01-06). "Collodictyon – an Ancient Lineage in the Tree of Eukaryotes". Molecular Biology and Evolution. 29 (6): 1557–68. doi:10.1093/molbev/mss001. ISSN   0737-4038. PMC   3351787 . PMID   22319147.
  2. 1 2 Rhodes, Robert Clinton (29 October 1917). Binary Fission in Collodictyon tricilliatum. Berkeley, California: University of California. number of flagella is four (page 238 of original book; page 50 of the pdf file). Flagella are equal in length, as long as the body or possibly longer...
  3. 1 2 3 4 5 6 7 "Scientists find 'man's remotest relative' in lake sludge". 26 April 2012.
  4. Skvortzov, B. V. (1968). On a new species of the genus Collodictyon Carter, a colourless flagellata new to the Hongkong flora. 22, 451–454.
  5. Brown, Matthew W; Heiss, Aaron A; Kamikawa, Ryoma; Inagaki, Yuji; Yabuki, Akinori; Tice, Alexander K; Shiratori, Takashi; Ishida, Ken-Ichiro; Hashimoto, Tetsuo; Simpson, Alastair; Roger, Andrew (2018-01-19). "Phylogenomics Places Orphan Protistan Lineages in a Novel Eukaryotic Super-Group". Genome Biology and Evolution. 10 (2): 427–433. doi:10.1093/gbe/evy014. ISSN   1759-6653. PMC   5793813 . PMID   29360967.
  6. 1 2 MD Guiry in Guiry MD & Guiry GM 2012. "Collodictyon HJ Carter, 1865: 289". AlgaeBase. World-wide electronic publication. Galway: National University of Ireland. Retrieved 28 April 2012.{{cite web}}: CS1 maint: numeric names: authors list (link)
  7. Live Science Strange, Organism Has Unique Roots in the Tree of Life, by Jennifer Welsh, 29 April 2012
  8. 1 2 3 Brugerolle, Guy; Bricheux G; Philippe H; Coffea G (March 2002). "Collodictyon triciliatum and Diphylleia rotans (=Aulacomonas submarina) form a new family of flagellates (Collodictyonidae) with tubular mitochondrial cristae that is phylogenetically distant from other flagellate groups". Protist. 153 (1): 59–70. doi:10.1078/1434-4610-00083. PMID   12022276.
  9. A., H. A., Aaron A. Heiss Aaron A. Heiss Department of Invertebrate Zoology and Sackler Institute for Comparative Genomics, Heiss, A. A., Aaron A. Heiss Department of Invertebrate Zoology and Sackler Institute for Comparative Genomics, Kolisko, M., Martin Kolisko Centre for Comparative Genomics and Evolutionary Bioinformatics, Ekelund, F., Fleming Ekelund Department of Biology, Brown, M. W., Matthew W. Brown Department of Biological Sciences, Roger, A. J., Andrew J. Roger Centre for Comparative Genomics and Evolutionary Bioinformatics, Simpson, A. G. B., Alastair G. B. Simpson http://orcid.org/0000-0002-4133-1709 Centre for Comparative Genomics and Evolutionary Bioinformatics, Electronic supplementary material is available online at https://dx.doi.org/10.6084/m9.figshare.c.4035095., & Al., E. (2018, April 4). Combined morphological and phylogenomic re-examination of malawimonads, a critical taxon for inferring the evolutionary history of Eukaryotes. Royal Society Open Science. Retrieved November 1, 2021, from https://royalsocietypublishing.org/doi/full/10.1098/rsos.171707.
  10. Nishibe, Y., Kawabata, Z., & Nakano, S.-ichi. (2002, September 23). Grazing on microcystis aeruginosa by the heterotrophic flagellate Collodictyon Triciliatum in a hypertrophic pond. Aquatic Microbial Ecology. Retrieved November 1, 2021, from https://www.int-res.com/abstracts/ame/v29/n2/p173-179/ .
  11. Yngve Vogt (23 April 2012). "Mankind's remotest relative". Apollon. Original Norwegian press release with pictures of researchers.
  12. Cavalier-Smith, Thomas; Chao, Ema E.; Lewis, Rhodri (2016-06-01). "187-gene phylogeny of protozoan phylum Amoebozoa reveals a new class (Cutosea) of deep-branching, ultrastructurally unique, enveloped marine Lobosa and clarifies amoeba evolution". Molecular Phylogenetics and Evolution. 99: 275–296. doi: 10.1016/j.ympev.2016.03.023 . PMID   27001604.
  13. 1 2 Carter, H.J. (1865). "XXXII.—On the fresh- and salt-water Rhizopoda of England and India". Journal of Natural History. Series 3. 15 (88): 277–293. doi:10.1080/00222936508681805. ISSN   0374-5481 . Retrieved 11 February 2018.
  14. 1 2 3 Rhodes, Robert Clinton (29 October 1917). Binary Fission in Collodictyon tricilliatum. Berkeley, California: University of California.
  15. Cambra Sánchez, J.; Álvarez Cobelas, M.; Aboal Sanjurjo, M. (1988). "Lista florística y bibliográfica de los clorófitos (Chlorophyta) de la Península Ibérica, Islas Baleares e Islas Canarias" (PDF). Asociación Española de Limnología. p. 9. Retrieved 28 April 2012.[ permanent dead link ]
  16. Lackey, James B. (1942-01-01). "The Plankton Algae and Protozoa of Two Tennessee Rivers". American Midland Naturalist. 27 (1): 191–202. doi:10.2307/2421034. ISSN   0003-0031. JSTOR   2421034.
  17. 1 2 Rhodes, Robert Clinton (29 October 1917). Binary Fission in Collodictyon tricilliatum. Berkeley, California: University of California. (page 220 from original book; page 32 from the pdf) ... In its feeding habits, Collodictyon is most interesting. When hungry, it can be distinguished from moribund stages in which all food is extruded by pseudopial projections from the lateral groove or sulcal region ... these pseudopodia ... function actively whenever the organism is seeking food. At these times when coming in contact with Protozoa or algae which it may use for food, they are wafted to the sulcal region by the flagella, or else Collodictyon aligns itself alongside of its prey with the pseudopodia in contact. ... Both the flagella and the pseudopodia appear sensitive to food stimulus ...
  18. Rhodes, Robert Clinton (29 October 1917). Binary Fission in Collodictyon tricilliatum. Berkeley, California: University of California. (page 239 of original book; page 51 of pdf file) ... Collodictyon is "one of the simplest and most primitive of the Polymastigina"...