Mantamonas

Last updated

Mantamonas
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Clade: Opimoda
Clade: CRuMs
Class: Glissodiscea
Cavalier-Smith 2013 emend. 2021 [1]
Order: Mantamonadida
Cavalier-Smith 2011 [2]
Family: Mantamonadidae
Cavalier-Smith 2011 [2]
Genus: Mantamonas
Cavalier-Smith & Glücksman 2011 [2]
Type species
Mantamonas plastica
Glücksman & Cavalier-Smith 2011 [2]
Species
Diversity
3 species [3]

Mantamonads are a group of free-living heterotrophic flagellates that move primarily by gliding on surfaces (rather than swimming). They are classified as one genus Mantamonas in the monotypic family Mantamonadidae, order Mantamonadida and class Glissodiscea. [1] Previously, they were classified in Apusozoa as sister of the Apusomonadida on the basis of rRNA analyses. [2] [4] However, mantamonads are currently placed in CRuMs on the basis of phylogenomic analyses that identify their closest relatives as the Diphylleida and Rigifilida. [5] [6]

Contents

Morphology

Mantamonas are heterotrophic unicellular protists. Their cells are flattened, relatively plastic and asymmetric. They have one thin anterior flagellum and one conspicuous posterior flagellum, on which they glide. The cells have a right hump, likely caused by the nucleus, and a blunt projection on the left side. They are typically 2 μm thick, [2] 5 μm long and 5 μm wide, but vary in size and shape depending on their growth phase and the bacterial density in the medium. [3] When wide-shaped, they present lateral "wings" that resemble the fins of a manta ray (hence the name Mantamonas). [3]

Ecology

Mantamonas are marine gliding heterotrophic flagellates. M. plastica was isolated from marine sediments, while M. vickermani was isolated from marine lagoon sediments. M. sphyraenae was obtained from the skin surface of a barracuda, suggesting that it could be an epizootic species. [3]

Evolution

When discovered in 2011, a phylogenetic analysis based on 28S and 18S rRNA recovered Mantamonas as a lineage closely related to Planomonadida and Apusomonadida, within the paraphyletic Apusozoa. [2] Later in 2018, a phylogenomic analysis recovered Mantamonas as the sister group of a clade comprising Collodictyonidae and Rigifilida. Together, the three groups compose the CRuMs clade, which is the sister group to Amorphea (Amoebozoa + Obazoa) in a clade known as Podiata. [6]

Eukaryota

Diaphoretickes

Discoba

Metamonada Cavalier-Smith 1987 emend. Cavalier-Smith 2003

Ancyromonadida Cavalier-Smith 1998 emend. Atkins 2000

Malawimonadea Cavalier-Smith 2003

Podiata
Amorphea

Amoebozoa Lühe 1913 emend. Cavalier-Smith 1998

Obazoa

Breviatea Cavalier-Smith 2004

Apusomonadida Karpov & Mylnikov 1989

Opisthokonta

CRuMs

Rigifilida Karpov & Mylnikov 1989

Diphylleida Cavalier-Smith 1993

Species

There are currently three species of Mantamonas. [3]

Related Research Articles

<span class="mw-page-title-main">Amorphea</span> Group including fungi, animals and various protozoa

Amorphea is a taxonomic supergroup that includes the basal Amoebozoa and Obazoa. That latter contains the Opisthokonta, which includes the Fungi, Animals and the Choanomonada, or Choanoflagellates. The taxonomic affinities of the members of this clade were originally described and proposed by Thomas Cavalier-Smith in 2002.

<span class="mw-page-title-main">Apusozoa</span> Phylum of micro-organisms

The Apusozoa are a paraphyletic phylum of flagellate eukaryotes. They are usually around 5–20 μm in size, and occur in soils and aquatic habitats, where they feed on bacteria. They are grouped together based on the presence of an organic shell or theca under the dorsal surface of the cell.

<i>Ancyromonas</i> Genus of protists

Ancyromonas is a genus of basal Eukaryote consisting of heterotrophic flagellates.

<span class="mw-page-title-main">Telonemia</span> Phylum of single-celled organisms

Telonemia is a phylum of microscopic eukaryotes commonly known as telonemids. They are unicellular free-living flagellates with a unique combination of cell structures, including a highly complex cytoskeleton unseen in other eukaryotes.

<span class="mw-page-title-main">Malawimonadidae</span> Family of protists

Malawimonadidae is a family of unicellular eukaryotes of outsize importance in understanding eukaryote phylogeny.

<i>Breviata</i> Genus of flagellated amoebae

Breviata anathema is a single-celled flagellate amoeboid eukaryote, previously studied under the name Mastigamoeba invertens. The cell lacks mitochondria, much like the pelobionts to which the species was previously assigned, but has remnant mitochondrial genes, and possesses an organelle believed to be a modified anaerobic mitochondrion, similar to the mitosomes and hydrogenosomes found in other eukaryotes that live in low-oxygen environments.

<i>Malawimonas</i> Genus of micro-organisms

Malawimonas is genus of unicellular, heterotrophic flagellates with uncertain phylogenetic affinities. They have variably being assigned to Excavata and Loukozoa. Recent studies suggest they may be closely related to the Podiata.

<i>Amastigomonas</i> Genus of protozoa with two flagella

Amastigomonas is a genus of protists belonging to a lineage of biciliated zooflagellates known as Apusomonadida. It was first described in 1931 by Henri de Saedeleer. The current use of Amastigomonas is as a descriptive archetype, with no phylogenetic or taxonomic implications. The term "Amastigomonas-like" is used to refer to all apusomonads that lack the 'derived' characteristics of Apusomonas.

<span class="mw-page-title-main">Apusomonadidae</span> Group of microorganisms with two flagella

The apusomonads are a group of protozoan zooflagellates that glide on surfaces, and mostly consume prokaryotes. They are of particular evolutionary interest because they appear to be the sister group to the Opisthokonts, the clade that includes both animals and fungi. Together with the Breviatea, these form the Obazoa clade.

<span class="mw-page-title-main">Ancyromonadida</span> Group of protists

Ancyromonadida or Planomonadida is a small group of biflagellated protists found in the soil and in aquatic habitats, where they feed on bacteria. Includes freshwater or marine organisms, benthic, dorsoventrally compressed and with two unequal flagellae, each emerging from a separate pocket. The apical anterior flagellum can be very thin or end in the cell membrane, while the posterior flagellum is long and is inserted ventrally or laterally. The cell membrane is supported by a thin single-layered theca and the mitochondrial crests are discoidal/flat.

Rigifilida is a clade of non-ciliate phagotrophic eukaryotes. It consists of two genera: Micronuclearia and Rigifila.

Rigifila is a genus of free-living single-celled eukaryotes, or protists, containing the sole species Rigifila ramosa. It is classified within the monotypic family Rigifilidae. Along with Micronucleariidae, it is a member of Rigifilida, an order of basal eukaryotes within the CRuMs clade. It differs from Micronuclearia by having two proteic layers surrounding their cytoplasm instead of a single one, and having more irregular mitochondrial cristae, among other morphological differences.

<span class="mw-page-title-main">Podiata</span> Clade of shelled animals

Podiates are a proposed clade containing the Amorphea and the organisms now assigned to the clade CRuMs. Ancyromonadida does not appear to have emerged in this grouping. Sarcomastigota is a proposed subkingdom that includes all the podiates that are not animals or fungi. Sulcozoa is a proposed phylum within Sarcomastigota that does not include the phyla Amoebozoa (clade) and Choanozoa (paraphyletic), i.e. it includes the proposed subphyla Apusozoa and Varisulca

<span class="mw-page-title-main">Varisulca</span> Proposed phylum of protists

Varisulca was a proposed basal Podiate taxon. It encompassed several lineages of heterotrophic protists, most notably the ancyromonads (planomonads), collodictyonids (diphylleids), rigifilids and mantamonadids. Recent evidence suggests that the latter three are closely related to each other, forming a clade called CRuMs, but that this is unlikely to be specifically related to ancyromonads

<span class="mw-page-title-main">Obazoa</span> Proposed group of single-celled organisms

Obazoa is a proposed sister clade of Amoebozoa. The term Obazoa is based on the OBA acronym for Opisthokonta, Breviatea, and Apusomonadida, the group's three constituent clades.

<span class="mw-page-title-main">CRuMs</span> Group of protists

CRuMs or Crumalia is a proposed clade of microbial eukaryotes, whose name is an acronym of the following constituent groups: i) collodictyonids also known as diphylleids, ii) rigifilids and iii) mantamonadids as sister of the Amorphea. It more or less supersedes Varisulca, as Ancyromonadida are inferred not to be specifically related to the orders Diphylleida/Collodictyonida, Rigifilida and Mantamonadida.

Mantamonas sphyraenae is a species of marine heterotrophic flagellates described in 2021. It belongs to the Mantamonadida, a basal eukaryotic lineage within a clade known as CRuMs. Its diploid genome is the first to be assembled within the CRuMs group.

Mantamonas vickermani is a species of marine heterotrophic flagellates described in 2021. It belongs to the Mantamonadida, a basal eukaryotic lineage within a clade known as CRuMs.

Mantamonas plastica is a species of marine heterotrophic biflagellates described in 2011. It is the type species of the Mantamonadida, a basal eukaryotic lineage within a clade known as CRuMs.

Thecamonadinae is a subfamily of heterotrophic protists. It is a monophyletic group, or clade, of apusomonads, a group of protozoa with two flagella closely related to the eukaryotic supergroup Opisthokonta. The subfamily contains two genera Chelonemonas and Thecamonas, which are found in marine habitats.

References

  1. 1 2 Cavalier-Smith, Thomas (May 2022). "Ciliary transition zone evolution and the root of the eukaryote tree: implications for opisthokont origin and classification of kingdoms Protozoa, Plantae, and Fungi". Protoplasma. 259 (3): 487–593. doi:10.1007/s00709-021-01665-7. PMC   9010356 . PMID   34940909.
  2. 1 2 3 4 5 6 7 8 Glücksman, Edvard; Snell, Elizabeth A.; Berney, Cédric; Chao, Ema E.; Bass, David; Cavalier-Smith, Thomas (September 2010). "The Novel Marine Gliding Zooflagellate Genus Mantamonas (Mantamonadida ord. n.: Apusozoa)". Protist. 162 (2): 207–221. doi:10.1016/j.protis.2010.06.004. PMID   20884290.
  3. 1 2 3 4 5 Blaz, Jazmin; Galindo, Luis Javier; Heiss, Aaron A.; Kaur, Harpreet; Torruella, Guifré; Yang, Ashley; Thompson, L. Alexa; Filbert, Alexander; Warring, Sally; Narechania, Apurva; Shiratori, Takashi; Ishida, Ken-ichiro; Dacks, Joel B.; López-García, Purificación; Moreira, David; Kim, Eunsoo; Eme, Laura (January 2021). "High quality genome and transcriptome data for two new species of Mantamonas, a deep-branching eukaryote clade". bioRxiv. doi: 10.1101/2023.01.20.524885 .
  4. Orr, Russell J. S.; Zhao, Sen; Klaveness, Dag; Yabuki, Akinori; Ikeda, Keiji; Makoto, Watanabe M.; Shalchian-Tabrizi, Kamran (2017-10-08). "Enigmatic Diphyllatea eukaryotes: Culturing and targeted PacBio RS amplicon sequencing reveals a higher order taxonomic diversity and global distribution". bioRxiv   10.1101/199125 .
  5. Cavalier-Smith, Thomas; Chao, Ema E.; Snell, Elizabeth A.; Berney, Cédric; Fiore-Donno, Anna Maria; Lewis, Rhodri (2014). "Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts (animals, fungi, choanozoans) and Amoebozoa". Molecular Phylogenetics and Evolution. 81: 71–85. doi: 10.1016/j.ympev.2014.08.012 . PMID   25152275.
  6. 1 2 Brown, Matthew W; Heiss, Aaron A; Kamikawa, Ryoma; Inagaki, Yuji; Yabuki, Akinori; Tice, Alexander K; Shiratori, Takashi; Ishida, Ken-Ichiro; Hashimoto, Tetsuo (January 2018). "Phylogenomics Places Orphan Protistan Lineages in a Novel Eukaryotic Super-Group". Genome Biology and Evolution. 10 (2): 427–433. doi:10.1093/gbe/evy014. ISSN   1759-6653. PMC   5793813 . PMID   29360967.