SAR supergroup

Last updated

SAR
Temporal range: 736–0 Ma [1]
Harosa.png
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Clade: Diaphoretickes
Clade: TSAR
Clade: SAR
Burki et al., 2007
Subtaxa
Synonyms
  • Harosa Cavalier-Smith, 2010

SAR or Harosa is a highly diverse clade of eukaryotes, often considered a supergroup, [2] that includes stramenopiles (heterokonts), alveolates, and rhizarians. [3] [4] [5] It is a node-based taxon, including all descendants of the three groups' last common ancestor, [6] and comprises most of the now-rejected Chromalveolata. [2] Their sister group has been found to be telonemids, with which they make up the TSAR clade. [7] [nb 1]

Contents

Etymology

The name SAR is an acronym derived from the first letters of its three constituent clades; [nb 2] it has been alternatively spelled "RAS". [6] [10] The term "Harosa" (at the subkingdom level) has also been used, with Stramenopiles replaced by its synonym Heterokonta in this variant of the acronym. [11]

History of discovery

Before the discovery of the SAR supergroup, stramenopiles and alveolates were classified in the supergroup Chromalveolata alongside haptophytes and cryptomonads, being believed to have acquired plastids through secondary endosymbiosis of red algae through a common ancestor. [2] Meanwhile, Rhizaria was traditionally considered to be a separate supergroup. More recent phylogenetic studies confirmed that stramenopiles and alveolates diverged with rhizarians as part of the SAR lineage. [12] This clade has been found by later phylogenomic studies to be robustly characterized compared to other supergroups. [7]

This groups excludes haptophytes and cryptomonads, hypothesized to have acquired plastids in separate endosymbiosis events, [13] leading Okamoto et al. (2009) to propose the clade Hacrobia to accommodate them. [14]

Diversity

The SAR supergroup encompasses a variety of morphologies and ecological niches, from microscopic zoo- and phytoplankton to massive kelp forests. The group includes both photosynthetic and non-photosynthetic forms. Photosynthesis arose independently across various stramenopiles and alveolates lineages through secondary or higher-order endosymbiosis events, acquiring plastids of red algal origin, [15] [13] while chlorarachniophyte rhizarians captured plastids from green algae, retaining vestigial nucleomorphs. [16]

It has been estimated that SAR encompasses up to half of all eukaryotic diversity. [2]

Owing to the clade's discovery through phylogenomics, there are no known synapomorphies uniting its various members. [3] This was already the case for its subclade Rhizaria, established earlier through similar means. On the other hand, Stramenopiles is well-defined morphologically, characterized by an anterior flagellum with tripartite bristles (mastigonemes), while Alveolata is united by the presence of cortical alveoli. [17]

Nonetheless, studies of telonemids, believed to be the sister group to SAR, have revealed characteristics such as tripartite hair and peripheral vacuoles, potentially homologous to similar structures in stramenopiles and alveolates. This brings into light the possibility of these structures being ancestrally shared by the clade, with cortical alveoli originating from peripheral vacuoles under this hypothesis. [7]

Internal phylogeny

A 2021 analysis places Alveolata and Stramenopiles in Halvaria, as sister to Rhizaria. [13]

TSAR

See also

Notes

  1. Some recent studies do not recover the TSAR clade and find telonemids to branch within or sister to Haptista, albeit with moderate support. In such case TSAR would be a polyphyletic group. [8] [9]
  2. As a formal taxon, "Sar" has only its first letter capitalized, while the earlier abbreviation, SAR, retains all uppercase letters. Both names denote the same group of organisms, unless further taxonomic revisions deem otherwise.

Related Research Articles

<span class="mw-page-title-main">Stramenopile</span> Clade of eukaryotes

The Stramenopiles, also called Heterokonts, are a clade of organisms distinguished by the presence of stiff tripartite external hairs. In most species, the hairs are attached to flagella, in some they are attached to other areas of the cellular surface, and in some they have been secondarily lost. Stramenopiles represent one of the three major clades in the SAR supergroup, along with Alveolata and Rhizaria.

<span class="mw-page-title-main">Alveolate</span> Superphylum of protists

The alveolates are a group of protists, considered a major clade and superphylum within Eukarya. They are currently grouped with the stramenopiles and Rhizaria among the protists with tubulocristate mitochondria into the SAR supergroup.

<span class="mw-page-title-main">Chromista</span> Eukaryotic biological kingdom

Chromista is a proposed but polyphyletic biological kingdom, refined from the Chromalveolata, consisting of single-celled and multicellular eukaryotic species that share similar features in their photosynthetic organelles (plastids). It includes all eukaryotes whose plastids contain chlorophyll c and are surrounded by four membranes. If the ancestor already possessed chloroplasts derived by endosymbiosis from red algae, all non-photosynthetic Chromista have secondarily lost the ability to photosynthesise. Its members might have arisen independently as separate evolutionary groups from the last eukaryotic common ancestor.

<span class="mw-page-title-main">Cercozoa</span> Group of single-celled organisms

Cercozoa is a phylum of diverse single-celled eukaryotes. They lack shared morphological characteristics at the microscopic level, and are instead united by molecular phylogenies of rRNA and actin or polyubiquitin. They were the first major eukaryotic group to be recognized mainly through molecular phylogenies. They are the natural predators of many species of bacteria. They are closely related to the phylum Retaria, comprising amoeboids that usually have complex shells, and together form a supergroup called Rhizaria.

<span class="mw-page-title-main">Rhizaria</span> Infrakingdom of protists

The Rhizaria are a diverse and species-rich supergroup of mostly unicellular eukaryotes. Except for the Chlorarachniophytes and three species in the genus Paulinella in the phylum Cercozoa, they are all non-photosynthetic, but many Foraminifera and Radiolaria have a symbiotic relationship with unicellular algae. A multicellular form, Guttulinopsis vulgaris, a cellular slime mold, has been described. This group was used by Cavalier-Smith in 2002, although the term "Rhizaria" had been long used for clades within the currently recognized taxon.

<span class="mw-page-title-main">Amorphea</span> Group including fungi, animals and various protozoa

Amorphea is a taxonomic supergroup that includes the basal Amoebozoa and Obazoa. That latter contains the Opisthokonta, which includes the Fungi, Animals and the Choanomonada, or Choanoflagellates. The taxonomic affinities of the members of this clade were originally described and proposed by Thomas Cavalier-Smith in 2002.

<span class="mw-page-title-main">Bikont</span> Group of eukaryotes

A bikont is any of the eukaryotic organisms classified in the group Bikonta. Many single-celled and multi-celled organisms are members of the group, and these, as well as the presumed ancestor, have two flagella.

<span class="mw-page-title-main">Chromalveolata</span> Group of eukaryotic organisms

Chromalveolata was a eukaryote supergroup present in a major classification of 2005, then regarded as one of the six major groups within the eukaryotes. It was a refinement of the kingdom Chromista, first proposed by Thomas Cavalier-Smith in 1981. Chromalveolata was proposed to represent the organisms descended from a single secondary endosymbiosis involving a red alga and a bikont. The plastids in these organisms are those that contain chlorophyll c.

<span class="mw-page-title-main">Archaeplastida</span> Clade of eukaryotes containing land plants and some algae

The Archaeplastida are a major group of eukaryotes, comprising the photoautotrophic red algae (Rhodophyta), green algae, land plants, and the minor group glaucophytes. It also includes the non-photosynthetic lineage Rhodelphidia, a predatorial (eukaryotrophic) flagellate that is sister to the Rhodophyta, and probably the microscopic picozoans. The Archaeplastida have chloroplasts that are surrounded by two membranes, suggesting that they were acquired directly through a single endosymbiosis event by phagocytosis of a cyanobacterium. All other groups which have chloroplasts, besides the amoeboid genus Paulinella, have chloroplasts surrounded by three or four membranes, suggesting they were acquired secondarily from red or green algae. Unlike red and green algae, glaucophytes have never been involved in secondary endosymbiosis events.

<span class="mw-page-title-main">Cabozoa</span> Former proposed clade

In the classification of eukaryotes, Cabozoa was a taxon proposed by Cavalier-Smith. It was a putative clade comprising the Rhizaria and Excavata. More recent research places the Rhizaria with the Alveolata and Stramenopiles instead of the Excavata, however, so "Cabozoa" is polyphyletic.

<span class="mw-page-title-main">Telonemia</span> Phylum of single-celled organisms

Telonemia is a phylum of microscopic eukaryotes commonly known as telonemids. They are unicellular free-living flagellates with a unique combination of cell structures, including a highly complex cytoskeleton unseen in other eukaryotes.

<span class="mw-page-title-main">Ochrophyte</span> Phylum of algae

Ochrophytes, also known as heterokontophytes or stramenochromes, are a group of algae. They are the photosynthetic stramenopiles, a group of eukaryotes, organisms with a cell nucleus, characterized by the presence of two unequal flagella, one of which has tripartite hairs called mastigonemes. In particular, they are characterized by photosynthetic organelles or plastids enclosed by four membranes, with membrane-bound compartments called thylakoids organized in piles of three, chlorophyll a and c as their photosynthetic pigments, and additional pigments such as β-carotene and xanthophylls. Ochrophytes are one of the most diverse lineages of eukaryotes, containing ecologically important algae such as brown algae and diatoms. They are classified either as phylum Ochrophyta or Heterokontophyta, or as subphylum Ochrophytina within phylum Gyrista. Their plastids are of red algal origin.

<span class="mw-page-title-main">Protist</span> Eukaryotes other than animals, plants or fungi

A protist or protoctist is any eukaryotic organism that is not an animal, land plant, or fungus. Protists do not form a natural group, or clade, but are a polyphyletic grouping of several independent clades that evolved from the last eukaryotic common ancestor.

<span class="mw-page-title-main">Hacrobia</span> Group of algae

The cryptomonads-haptophytes assemblage is a proposed but disputed monophyletic grouping of unicellular eukaryotes that are not included in the SAR supergroup. Several alternative names have been used for the group, including Hacrobia ; CCTH ; and "Eukaryomonadae".

<span class="mw-page-title-main">Diaphoretickes</span> Taxon of eukaryotes

Diaphoretickes is a major group of eukaryotic organisms, with over 400,000 species. The majority of the earth's biomass that carries out photosynthesis belongs to Diaphoretickes.

<span class="mw-page-title-main">Halvaria</span> Infrakingdom of protists

Halvaria is a taxonomic grouping of protists that includes Alveolata and Stramenopiles (Heterokonta).

<span class="mw-page-title-main">Cryptista</span> Clade of algae

Cryptista is a clade of alga-like eukaryotes. It is most likely related to Archaeplastida which includes plants and many algae, within the larger group Diaphoretickes.

<span class="mw-page-title-main">Haptista</span> Group of protists

Haptista is a proposed group of protists made up of centrohelids and haptophytes. Phylogenomic studies indicate that Haptista, together with Ancoracysta twista, forms a sister clade to the SAR+Telonemia supergroup, but it may also be sister to the Cryptista (+Archaeplastida). It is thus one of the earliest diverging Diaphoretickes.

<span class="mw-page-title-main">Cortical alveolum</span> Cellular organelle found in protists

The cortical alveolum is a cellular organelle consisting of a vesicle located under the cytoplasmic membrane, to which they give support. The term "corticate" comes from an evolutionary hypothesis about the common origin of kingdoms Plantae and Chromista, because both kingdoms have cortical alveoli in at least one phylum. At least three protist lineages exhibit these structures: Telonemia, Alveolata and Glaucophyta.

A supergroup, in evolutionary biology, is a large group of organisms that share one common ancestor and have important defining characteristics. It is an informal, mostly arbitrary rank in biological taxonomy that is often greater than phylum or kingdom, although some supergroups are also treated as phyla.

References

  1. Laura Wegener Parfrey, Daniel J G Lahr, Andrew H Knoll, Laura A Katz (16 August 2011). "Estimating the timing of early eukaryotic diversification with multigene molecular clocks" (PDF). Proceedings of the National Academy of Sciences of the United States of America . 108 (33): 13624–9. Bibcode:2011PNAS..10813624P. doi:10.1073/PNAS.1110633108. ISSN   0027-8424. PMC   3158185 . PMID   21810989. Wikidata   Q24614721.
  2. 1 2 3 4 Burki, Fabien; Roger, Andrew J.; Brown, Matthew W.; Simpson, Alastair G.B. (January 2020). "The New Tree of Eukaryotes". Trends in Ecology & Evolution. 35 (1): 43–55. Bibcode:2020TEcoE..35...43B. doi: 10.1016/j.tree.2019.08.008 . PMID   31606140.
  3. 1 2 Burki F, Shalchian-Tabrizi K, Minge M, Skjaeveland A, Nikolaev SI, Jakobsen KS, Pawlowski J (August 2007). Butler G (ed.). "Phylogenomics reshuffles the eukaryotic supergroups". PLOS ONE. 2 (8): e790. Bibcode:2007PLoSO...2..790B. doi: 10.1371/journal.pone.0000790 . PMC   1949142 . PMID   17726520.
  4. Hampl V, Hug L, Leigh JW, Dacks JB, Lang BF, Simpson AG, Roger AJ (March 2009). "Phylogenomic analyses support the monophyly of Excavata and resolve relationships among eukaryotic "supergroups"". Proceedings of the National Academy of Sciences of the United States of America. 106 (10): 3859–64. Bibcode:2009PNAS..106.3859H. doi: 10.1073/pnas.0807880106 . PMC   2656170 . PMID   19237557.
  5. Frommolt R, Werner S, Paulsen H, Goss R, Wilhelm C, Zauner S, et al. (December 2008). "Ancient recruitment by chromists of green algal genes encoding enzymes for carotenoid biosynthesis". Molecular Biology and Evolution. 25 (12): 2653–67. doi: 10.1093/molbev/msn206 . PMID   18799712.
  6. 1 2 Adl SM, Simpson AG, Lane CE, Lukeš J, Bass D, Bowser SS, et al. (September 2012). "The revised classification of eukaryotes". The Journal of Eukaryotic Microbiology. 59 (5): 429–93. doi:10.1111/j.1550-7408.2012.00644.x. PMC   3483872 . PMID   23020233.
  7. 1 2 3 Strassert JF, Jamy M, Mylnikov AP, Tikhonenkov DV, Burki F (April 2019). Shapiro B (ed.). "New Phylogenomic Analysis of the Enigmatic Phylum Telonemia Further Resolves the Eukaryote Tree of Life". Molecular Biology and Evolution. 36 (4): 757–765. doi:10.1093/molbev/msz012. PMC   6844682 . PMID   30668767.
  8. Yazaki, Euki; Yabuki, Akinori; Imaizumi, Ayaka; Kume, Keitaro; Hashimoto, Tetsuo; Inagaki, Yuji (2022). "The closest lineage of Archaeplastida is revealed by phylogenomics analyses that include Microheliella maris". Open Biol. 12 (4): 210376. doi:10.1098/rsob.210376. PMC   9006020 .
  9. Torruella, Guifré; Galindo, Luis Javier; Moreira, David; López-García, Purificación (27 August 2024). "Phylogenomics of neglected flagellated protists supports a revised eukaryotic tree of life". bioRxiv.org. doi:10.1101/2024.05.15.594285 . Retrieved 12 November 2024.
  10. Baldauf SL (2008). "An overview of the phylogeny and diversity of eukaryotes" (PDF). Journal of Systematics and Evolution. 46 (3): 263–273. doi:10.3724/SP.J.1002.2008.08060 (inactive 1 November 2024). S2CID   512766. Archived from the original (PDF) on 2019-08-20.{{cite journal}}: CS1 maint: DOI inactive as of November 2024 (link)
  11. Cavalier-Smith T (June 2010). "Kingdoms Protozoa and Chromista and the eozoan root of the eukaryotic tree". Biology Letters. 6 (3): 342–5. doi:10.1098/rsbl.2009.0948. PMC   2880060 . PMID   20031978.
  12. Dawkins R, Wong Y (2016). Ancestor's Tale. Houghton Mifflin Harcourt. pp. 573–577. ISBN   978-0-544-85993-7.
  13. 1 2 3 Strassert JF; Irisarri I; Williams TA; Burki F (March 2021). "A molecular timescale for eukaryote evolution with implications for the origin of red algal-derived plastids". Nature Communications. 12 (1): 1879. Bibcode:2021NatCo..12.1879S. doi:10.1038/s41467-021-22044-z. PMC   7994803 . PMID   33767194.
  14. Burki F (May 2014). "The eukaryotic tree of life from a global phylogenomic perspective". Cold Spring Harbor Perspectives in Biology. 6 (5): a016147. doi:10.1101/cshperspect.a016147. PMC   3996474 . PMID   24789819.
  15. McFadden, G. I. (2001). "Primary and secondary endosymbiosis and the origin of plastids". Journal of Phycology. 37 (6): 951–959. Bibcode:2001JPcgy..37..951M. doi:10.1046/j.1529-8817.2001.01126.x. S2CID   51945442.
  16. Archibald JM (January 2009). "The puzzle of plastid evolution". Current Biology. 19 (2): R81-8. Bibcode:2009CBio...19..R81A. doi: 10.1016/j.cub.2008.11.067 . PMID   19174147. S2CID   51989.
  17. Grattepanche, Jean David; et al. (March 2018). "Microbial Diversity in the Eukaryotic SAR Clade: Illuminating the Darkness Between Morphology and Molecular DataDarkness Between Morphology and Molecular Data". BioEssays. doi: 10.1002/bies.201700198 .