Filozoa

Last updated

Filozoans
Temporal range: Late Tonian - Present,
782.2–0 Ma
Elephant-ear-sponge.jpg
Orange elephant ear sponge, Agelas clathrodes , in foreground. Two corals in the background: a sea fan, Iciligorgia schrammi , and a sea rod, Plexaurella nutans .
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Clade: Amorphea
Clade: Obazoa
(unranked): Opisthokonta
(unranked): Holozoa
(unranked): Filozoa
Shalchian-Tabrizi et al., 2008
Subgroups

The Filozoa are a monophyletic grouping within the Opisthokonta. They include animals and their nearest unicellular relatives (those organisms which are more closely related to animals than to fungi or Mesomycetozoa). [1]

Contents

Three groups are currently assigned to the clade Filozoa:

Etymology

From Latin filum meaning "thread" and Greek zōion meaning "animal".

Phylogeny

A phylogenetic tree of Filozoa and its most closely related clades: [2] [3] [4] [5]

Opisthokonta
Holomycota
Cristidiscoidea

Fonticulida

Nucleariida Nuclearia sp Nikko.jpg

Fungi/

BCG2

True Fungi Asco1013.jpg

Aphelida

BCG1

Rozellomyceta/

Rozella Rozella allomycis2.jpg

Namako-37

Microsporidia Fibrillanosema spore.jpg

Cryptomycota
Opisthosporidia
Holozoa

Ichthyosporea Abeoforma whisleri-2.jpg

Pluriformea

Syssomonas

Corallochytrium Corallochytrium limacisporum.png

Filozoa

Filasterea Ministeria vibrans.jpeg

Choanozoa

Choanoflagellatea Desmarella moniliformis.jpg

Animalia Mola mola.jpg

950 mya
1100 mya
1300 mya

Characteristics

The ancestral opisthokont cell is assumed to have possessed slender filose (thread-like) projections or 'tentacles'. In some opisthokonts (Mesomycetozoa and Corallochytrium ) these were lost. They are retained in Filozoa, where they are simple and non-tapering, with a rigid core of actin bundles (contrasting with the flexible, tapering and branched filopodia of nucleariids and the branched rhizoids and hyphae of fungi). In choanoflagellates and in the most primitive animals, namely sponges, they aggregate into a filter-feeding collar (made from microvilli, that are also made from actin) around the cilium or flagellum; this is thought to be an inheritance from their most recent common filozoan ancestor. [1]

Related Research Articles

<span class="mw-page-title-main">Nucleariida</span> Order of amoebae

Nucleariida is a group of amoebae with filose pseudopods, known mostly from soils and freshwater. They are distinguished from the superficially similar vampyrellids mainly by having mitochondria with discoid cristae, in the absence of superficial granules, and in the way they consume food.

<span class="mw-page-title-main">Opisthokont</span> Group of eukaryotes which includes animals and fungi, among other groups

The opisthokonts are a broad group of eukaryotes, including both the animal and fungus kingdoms. The opisthokonts, previously called the "Fungi/Metazoa group", are generally recognized as a clade. Opisthokonts together with Apusomonadida and Breviata comprise the larger clade Obazoa.

<span class="mw-page-title-main">Amorphea</span> Members of the Unikonta, a taxonomic group proposed by Thomas Cavalier-Smith

Amorphea is a taxonomic supergroup that includes the basal Amoebozoa and Obazoa. That latter contains the Opisthokonta, which includes the Fungi, Animals and the Choanomonada, or Choanoflagellates. The taxonomic affinities of the members of this clade were originally described and proposed by Thomas Cavalier-Smith in 2002.

<span class="mw-page-title-main">Mesomycetozoea</span> Clade of eukaryote organisms

The Mesomycetozoea are a small group of Opisthokonta in Eukaryota, mostly parasites of fish and other animals.

<span class="mw-page-title-main">Cristidiscoidea</span> Proposed basal holomycota clade

Cristidiscoidea or Nucleariae is a proposed basal holomycota clade in which Fonticula and Nucleariida emerged, as sister of the fungi. Since it is close to the divergence between the main lineages of fungi and animals, the study of Cristidiscoidea can provide crucial information on the divergent lifestyles of these groups and the evolution of opisthokonts and slime mold multicellularity. The holomycota tree is following Tedersoo et al.

<span class="mw-page-title-main">Apusozoa</span> Phylum of micro-organisms

The Apusozoa are an Obazoa phylum comprising several genera of flagellate eukaryotes. They are usually around 5–20 μm in size, and occur in soils and aquatic habitats, where they feed on bacteria. They are grouped together based on the presence of an organic shell or theca under the dorsal surface of the cell.

<span class="mw-page-title-main">Corticata</span> Type of plant

Corticata, in the classification of eukaryotes, is a clade suggested by Thomas Cavalier-Smith to encompass the eukaryote supergroups of the following two groups:

<i>Capsaspora</i> Single-celled eukaryote genus

Capsaspora is a monotypic genus containing the single species Capsaspora owczarzaki. C. owczarzaki is a single-celled eukaryote that occupies a key phylogenetic position in our understanding of the origin of animal multicellularity, as one of the closest unicellular relatives to animals. It is, together with Ministeria vibrans, a member of the Filasterea clade. This amoeboid protist has been pivotal to unravel the nature of the unicellular ancestor of animals, which has been proved to be much more complex than previously thought.

<span class="mw-page-title-main">Filasterea</span> Basal Filozoan clade

Filasterea is a proposed basal Filozoan clade that includes Ministeria and Capsaspora. It is a sister clade to the Choanozoa in which the Choanoflagellatea and Animals appeared. Originally proposed by Shalchian-Tabrizi et al. in 2008, based on a phylogenomic analysis with dozens of genes. Filasterea was found to be the sister-group to the clade composed of Metazoa and Choanoflagellata within the Opisthokonta, a finding that has been further corroborated with additional, more taxon-rich, phylogenetic analyses.

<span class="mw-page-title-main">Holozoa</span> Group of organisms

Holozoa is a group of organisms that includes animals and their closest single-celled (protist) relatives, but excludes fungi and all other organisms. It is a monophyletic group or clade, a lineage consisting of all descendants of a common ancestor. Among these descendants, the protists are of high interest because of their close relationship to animals: in the search for the genes responsible for animal multicellularity within these protists, they help elucidate the nature of the unicellular ancestor of animals.

<span class="mw-page-title-main">Diaphoretickes</span> Taxon of eukaryotes

Diaphoretickes is a major group of eukaryotic organisms, with over 400,000 species. The majority of the earth's biomass that carries out photosynthesis belongs to Diaphoretickes.

<span class="mw-page-title-main">Holomycota</span> Clade of fungi

Holomycota or Nucletmycea are a basal Opisthokont clade as sister of the Holozoa. It consists of the Cristidiscoidea and the kingdom Fungi. The position of nucleariids, unicellular free-living phagotrophic amoebae, as the earliest lineage of Holomycota suggests that animals and fungi independently acquired complex multicellularity from a common unicellular ancestor and that the osmotrophic lifestyle was originated later in the divergence of this eukaryotic lineage. Opisthosporidians is a recently proposed taxonomic group that includes aphelids, Microsporidia and Cryptomycota, three groups of endoparasites.

<span class="mw-page-title-main">Varisulca</span> Proposed phylum of protists

Varisulca was a proposed basal Podiate taxon. It encompassed several lineages of heterotrophic protists, most notably the ancyromonads (planomonads), collodictyonids (diphylleids), rigifilids and mantamonadids. Recent evidence suggests that the latter three are closely related to each other, forming a clade called CRuMs, but that this is unlikely to be specifically related to ancyromonads

<span class="mw-page-title-main">Choanozoa</span> Clade of opisthokont eukaryotes consisting of the choanoflagellates and the animals

Choanozoa is a clade of opisthokont eukaryotes consisting of the choanoflagellates (Choanoflagellatea) and the animals. The sister-group relationship between the choanoflagellates and animals has important implications for the origin of the animals. The clade was identified in 2015 by Graham Budd and Sören Jensen, who used the name Apoikozoa. The 2018 revision of the classification first proposed by the International Society of Protistologists in 2012 recommends the use of the name Choanozoa.

<span class="mw-page-title-main">Obazoa</span> Proposed group of single-celled organisms

Obazoa is a proposed sister clade of Amoebozoa. The term Obazoa is based on the OBA acronym for Opisthokonta, Breviatea, and Apusomonadida, the group's three constituent clades.

<span class="mw-page-title-main">Orthokaryotes</span>

The Orthokaryotes are a proposed Eukaryote clade consisting of the Jakobea and the Neokaryotes. Together with its sister Discicristata it forms a basal Eukaryote clade. They are characterized by stacked Golgi, orthogonal centrioles, and two opposite posterior ciliary roots.

<span class="mw-page-title-main">Neokaryotes</span> Eukaryote clade consisting of most protists

The neokaryotes are a proposed eukaryote clade consisting of the unikonts and the bikonts as sister of for instance the Jakobea. It arises because the Euglenozoa, Percolozoa, Tsukubea, and Jakobea are seen in this view as more basal eukaryotes. These four groups, are traditionally grouped together in the Discoba. However, the Discoba may well be paraphyletic as the neokaryotes may have emerged in them.

The Scotokaryotes (Cavalier-Smith) is a proposed basal Neokaryote clade as sister of the Diaphoretickes. Basal Scotokaryote groupings are the Metamonads, the Malawimonas and the Podiata. In this phylogeny the Discoba are sometimes seen as paraphyletic and basal Eukaryotes.

Mantamonads are a group of free-living heterotrophic flagellates that move primarily by gliding on surfaces. They are classified as one genus Mantamonas in the monotypic family Mantamonadidae, order Mantamonadida and class Glissodiscea. Previously, they were classified in Apusozoa as sister of the Apusmonadida on the basis of rRNA analyses. However, mantamonads are currently placed in CRuMs on the basis of phylogenomic analyses that identify their closest relatives as the Diphylleida and Rigifilida.

Pluriformea is a proposed sibling clade of the Filozoa, and consists of Syssomonas multiformis and the Corallochytrea. Together with the Ichthyosporea they form the Holozoa.

References

  1. 1 2 Shalchian-Tabrizi K.; Minge M.A.; Espelund M.; et al. (7 May 2008). Aramayo, Rodolfo (ed.). "Multigene phylogeny of choanozoa and the origin of animals". PLOS ONE. 3 (5): e2098. Bibcode:2008PLoSO...3.2098S. doi: 10.1371/journal.pone.0002098 . PMC   2346548 . PMID   18461162. Open Access logo PLoS transparent.svg
  2. Parfrey, Laura Wegener; Lahr, Daniel J. G.; Knoll, Andrew H.; Katz, Laura A. (August 16, 2011). "Estimating the timing of early eukaryotic diversification with multigene molecular clocks". Proceedings of the National Academy of Sciences of the United States of America. 108 (33): 13624–13629. doi: 10.1073/pnas.1110633108 . PMC   3158185 . PMID   21810989.
  3. Hehenberger, Elisabeth; Tikhonenkov, Denis V.; Kolisko, Martin; Campo, Javier del; Esaulov, Anton S.; Mylnikov, Alexander P.; Keeling, Patrick J. (10 July 2017). "Novel Predators Reshape Holozoan Phylogeny and Reveal the Presence of a Two-Component Signaling System in the Ancestor of Animals". Current Biology. 27 (13): 2043–2050.e6. doi: 10.1016/j.cub.2017.06.006 . PMID   28648822.
  4. Adl, Sina M.; Bass, David; Lane, Christopher E.; Lukeš, Julius; Schoch, Conrad L.; Smirnov, Alexey; Agatha, Sabine; Berney, Cedric; Brown, Matthew W. (2018-09-26). "Revisions to the Classification, Nomenclature, and Diversity of Eukaryotes". Journal of Eukaryotic Microbiology. 66 (1): 4–119. doi:10.1111/jeu.12691. ISSN   1066-5234. PMC   6492006 . PMID   30257078.
  5. Tedersoo, Leho; Sánchez-Ramírez, Santiago; Kõljalg, Urmas; Bahram, Mohammad; Döring, Markus; Schigel, Dmitry; May, Tom; Ryberg, Martin; Abarenkov, Kessy (2018). "High-level classification of the Fungi and a tool for evolutionary ecological analyses". Fungal Diversity. 90 (1): 135–159. doi: 10.1007/s13225-018-0401-0 . ISSN   1560-2745.