Changchengia

Last updated

Changchengia
Temporal range: Statherian–Calymmian
Changchengia stipitata.png
Reconstruction of Changchengia stipitata
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: incertae sedis
Genus: Changchengia
Yan & Liu, 1997
Species:
C. stipitata
Binomial name
Changchengia stipitata
Yan and Liu, 1997

Changchengia is a genus of possible alga from the early-mid Proterozoic. It contains one species, Changchengia stipitata. This genus is known from various formations, such as the Olive Shales of the Vindhya Range [1] and the Saraipali Formation in India, [2] alongside the Chuanlinggou Formation of China. [3]

Description

Changchengia is between 0.7 and 40 mm (0.03 and 1.57 in) long and between 0.5 to 4 mm (0.02 to 0.16 in) wide, with a thin blade-like thallus. In C. stipitata the thallus is usually ribbon-shaped or lanceolate with folded and lamellose margins, with the widest point in the middle and tapering towards the base and tip. However, fossils from the Chuanlinggou Formation are more ovoid or obcordate in shape, alongside tapering holdfasts. The base is obtuse and contacts with a long and linear parastem, which itself connects to a holdfast. This genus shares many morphological similarities with Tuanshanzia , and infact it was classified within this genus at first. [2] However, a conspicuous difference between the two is that Tuanshanzia has no parastem, and instead its thallus slowly narrows towards the holdfast.

Related Research Articles

<span class="mw-page-title-main">Proterozoic</span> Geologic eon, 2500–539 million years ago

The Proterozoic is the third of the four geologic eons of Earth's history, spanning the time interval from 2500 to 538.8 Mya, and is the longest eon of Earth's geologic time scale. It is preceded by the Archean and followed by the Phanerozoic, and is the most recent part of the Precambrian "supereon".

<span class="mw-page-title-main">Paleoproterozoic</span> First era of the Proterozoic Eon

The Paleoproterozoic Era is the first of the three sub-divisions (eras) of the Proterozoic eon, and also the longest era of the Earth's geological history, spanning from 2,500 to 1,600 million years ago (2.5–1.6 Ga). It is further subdivided into four geologic periods, namely the Siderian, Rhyacian, Orosirian and Statherian.

<i>Wiwaxia</i> Genus of Cambrian animals

Wiwaxia is a genus of soft-bodied animals that were covered in carbonaceous scales and spines that protected it from predators. Wiwaxia fossils—mainly isolated scales, but sometimes complete, articulated fossils—are known from early Cambrian and middle Cambrian fossil deposits across the globe. The living animal would have measured up to 5 centimetres (2 in) when fully grown, although a range of juvenile specimens are known, the smallest being 2 millimetres (0.08 in) long.

<span class="mw-page-title-main">Geology of Antarctica</span> Geologic composition of Antarctica

The geology of Antarctica covers the geological development of the continent through the Archean, Proterozoic and Phanerozoic eons.

<span class="mw-page-title-main">Ecca Group</span> Second of the main subdivisions of the Karoo Supergroup of geological strata in southern Africa

The Ecca Group is the second of the main subdivisions of the Karoo Supergroup of geological strata in southern Africa. It mainly follows conformably after the Dwyka Group in some sections, but in some localities overlying unconformably over much older basement rocks. It underlies the Beaufort Group in all known outcrops and exposures. Based on stratigraphic position, lithostratigraphic correlation, palynological analyses, and other means of geological dating, the Ecca Group ranges between Early to earliest Middle Permian in age.

<i>Dinomischus</i> Genus of stalked filter-feeding animals

Dinomischusis an extinct genus of stalked filter-feeding animals within the Cambrian period, with specimens known from the Burgess Shale and the Maotianshan Shales. While long of uncertain affinities, recent studies have suggested it to be a stem-group ctenophore.

<i>Florissantia</i> (plant) Genus of plant in the mallow family (fossil)

Florissantia is an extinct genus of flowering plants in the Malvaceae subfamily Sterculioideae known from western North America and far eastern Asia. Flower, fruit, and pollen compression fossils have been found in formations ranging from the Early Eocene through to the Early Oligocene periods. The type species is Florissantia speirii and three additional species are known, Florissantia ashwillii, Florissantia quilchenensis, and Florissantia sikhote-alinensis.

<i>Horodyskia</i> Fossilised organism

Horodyskia is a fossilised organism found in rocks dated from 1,500 million years ago to 900 million years ago. Its shape has been described as a "string of beads" connected by a very fine thread. It is considered one of the oldest known eukaryotes.

<i>Eoandromeda</i> Species of Ediacaran animal

Eoandromeda is an Ediacaran organism consisting of eight radial spiral arms, and known from two taphonomic modes: the standard Ediacara type preservation in Australia, and as carbonaceous compressions from the Doushantuo formation of China, where it is abundant.

<i>Roccella</i> (lichen) Genus of lichens in the family Roccellaceae

Roccella is a genus of 23 species of lichens in the family Roccellaceae. The genus was circumscribed by Swiss botanist Augustin Pyramus de Candolle in 1805, with Roccella fuciformis as the type species.

<span class="mw-page-title-main">Unkar Group</span> Sequence of geologic strata of Proterozoic age

The Unkar Group is a sequence of strata of Proterozoic age that are subdivided into five geologic formations and exposed within the Grand Canyon, Arizona, Southwestern United States. The Unkar Group is the basal formation of the Grand Canyon Supergroup. The Unkar is about 1,600 to 2,200 m thick and composed, in ascending order, of the Bass Formation, Hakatai Shale, Shinumo Quartzite, Dox Formation, and Cardenas Basalt. The Cardenas Basalt and Dox Formation are found mostly in the eastern region of Grand Canyon. The Shinumo Quartzite, Hakatai Shale, and Bass Formation are found in central Grand Canyon. The Unkar Group accumulated approximately between 1250 and 1104 Ma. In ascending order, the Unkar Group is overlain by the Nankoweap Formation, about 113 to 150 m thick; the Chuar Group, about 1,900 m (6,200 ft) thick; and the Sixtymile Formation, about 60 m (200 ft) thick. These are all of the units of the Grand Canyon Supergroup. The Unkar Group makes up approximately half of the thickness of the Grand Canyon Supergroup.

<span class="mw-page-title-main">Grand Canyon Supergroup</span> Sequence of sedimentary strata

The Grand Canyon Supergroup is a Mesoproterozoic to a Neoproterozoic sequence of sedimentary strata, partially exposed in the eastern Grand Canyon of Arizona. This group comprises the Unkar Group, Nankoweap Formation, Chuar Group and the Sixtymile Formation, which overlie Vishnu Basement Rocks. Several notable landmarks of the Grand Canyon, such as the Isis Temple and Cheops Pyramid, and the Apollo Temple, are surface manifestations of the Grand Canyon Supergroup.

<span class="mw-page-title-main">Hakatai Shale</span> Mesoproterozoic rock formation

The Hakatai Shale is a Mesoproterozoic rock formation with important exposures in the Grand Canyon, Coconino County, Arizona. It consists of colorful strata that exhibit colors varying from purple to red to brilliant orange. These colors are the result of the oxidation of iron-bearing minerals in the Hakatai Shale. It consists of lower and middle members that consist of bright-red, slope-forming, highly fractured, argillaceous mudstones and shale and an upper member composed of purple and red, cliff-forming, medium-grained sandstone. Its thickness, which apparently increases eastwards, varies from 137 to 300 m. In general, the Hakatai Shale and associated strata of the Unkar Group rocks dip northeast (10–30°) toward normal faults that dip 60° or more toward the southwest. This can be seen at the Palisades fault in the eastern part of the main Unkar Group outcrop area. In addition, thick, prominent, and dark-colored basaltic sills and dikes cut across the purple to red to brilliant orange strata of the Hakatai Shale.

One of the major depositional strata in the Himalaya is the Lesser Himalayan Strata from the Paleozoic to Mesozoic eras. It had a quite different marine succession during the Paleozoic, as most parts of it are sparsely fossiliferous or even devoid of any well-defined fossils. Moreover, it consists of many varied lithofacies, making correlation work more difficult. This article describes the major formations of the Paleozoic – Mesozoic Lesser Himalayan Strata, including the Tal Formation, Gondwana Strata, Singtali Formation and Subathu Formation.

<span class="mw-page-title-main">Geology of Zambia</span>

The geological history of Zambia begins in the Proterozoic eon of the Precambrian. The igneous and metamorphic basement rocks tend to be highly metamorphosed and may have formed earlier in the Archean, but heat and pressure has destroyed evidence of earlier conditions. Major sedimentary and metamorphic groups formed in the mid-Proterozoic, followed by a series of glaciations in the Neoproterozoic and much of the Paleozoic which deposited glacial conglomerate as well as other sediments to form the Katanga Supergroup and rift-related Karoo Supergroup. Basalt eruptions blanketed the Karoo Supergroup in the Mesozoic and Zambia shifted to coal and sandstone formation. Geologically recent windblown sands from the Kalahari Desert and alluvial deposits near rivers play an important role in the modern surficial geology of Zambia. The country has extensive natural resources, particularly copper, but also cobalt, emeralds, other gemstones, uranium and coal.

<span class="mw-page-title-main">Whitehill Formation</span> Early Permian geological formation in South Africa

The Whitehill Formation, alternatively written as White Hill Formation and formerly known as White Band or Whitehill or White Hill Member, is a regional Early Permian geologic formation belonging to the Ecca Group in the southeastern ǁKaras Region of southeastern Namibia and Eastern, Northern and Western Cape provinces of South Africa.

Paraconcavistylon is an extinct genus of flowering plant in the family Trochodendraceae comprises a single species, Paraconcavistylon wehrii. The genus is known from fossil fruits and leaves found in the early Eocene deposits of northern Washington state, United States, and southern British Columbia, Canada. The species was initially described as a member of the related extinct genus Concavistylon as "Concavistylon" wehrii, but subsequently moved to the new genus Paraconcavistylon in 2020 after additional study.

<i>Tuanshanzia</i> Genus of Proterozoic alga

Tuanshanzia is a genus of Proterozoic eukaryote, known from several locations across China and India, including the Gaoyuzhuang and Chuanlinggou formations, the eponymous Tuanshanzi Formation, as well as the Vindhya Basin. It is probably an alga, although its exact classification is currently unclear. Tuanshanzia seems to be part of a wider group of elongate Proterozoic algae, alongside Changchengia and Eopalmaria.

<i>Sinocylindra</i> Extinct algae genus

Sinocylindra is an extinct genus of macroalgae that existed between the Ediacaran and Middle Cambrian periods. It is a part of the Chengjiang biota in the Maotianshan Shales in Yunnan, China. Only two species, S. yunnanensis and S. linearis, are described.

The Chuanlinggou Formation is a geologic formation in China. It preserves fossils dating back to the Statherian period of the Paleoproterozoic. It is the first formation to preserve definitive macroscopic eukaryotes, at 1.64 billion years old.

References

  1. Sharma, Mukund (December 2006). "Late Palaeoproterozoic (Statherian) carbonaceous films from the Olive Shale (Koldaha Shale), Semri Group, Vindhyan Supergroup, India" (PDF). Journal of the Palaeontological Society of India. 51 (2): 27–35.
  2. 1 2 Babu, Rupendra; Singh, Veeru Kant (July 2011). "Record of aquatic carbonaceous metaphytic remains from the Proterozoic Singhora Group of Chhattisgarh Supergroup, India and their significance". Journal of Evolutionary Biology Research. 3 (5): 47–66.
  3. Liu, Jingqi; Zhang, Yang; Shi, Xiaoying; Chen, Anfeng; Tang, Dongjie; Yang, Tinglu (November 2023). "Macroscopic fossils from the Chuanlinggou Formation of North China: evidence for an earlier origin of multicellular algae in the late Palaeoproterozoic". Palaeontology. 66 (6). doi:10.1111/pala.12685.