Skoliomonas

Last updated

Skoliomonas
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Phylum: Metamonada
Genus: Skoliomonas
Eglit & Simpson, 2024 [1]
Species:
S. litria
Binomial name
Skoliomonas litria
Eglit & Simpson, 2024 [2]
Type strain
TZLM1-RC

Skoliomonas is a genus of anaerobic protists closely related to barthelonids, a small group of basal eukaryotes within the phylum Metamonada. It is a monotypic genus containing the sole species Skoliomonas litria. Members of this genus are informally named skoliomonads. They are found inhabiting hypersaline alkaline lakes in Tanzania and North America.

Contents

Etymology

The name Skoliomonas derives from Greek σκολιός (skolios) 'bent', 'crooked', which refers to the hunched appearance of the cell and the twisted venral groove, and μονάς (monas) 'unit', a common suffix used for unicellular protists. [1] The specific epithet litria comes from Ancient Greek ́τρον (litron), an alternative form of νίτρον (nitron), meaning sodium carbonate; the term was used by Herodotus to describe embalming salts used for mummification in Ancient Egypt, harvested from carbonate-rich soda lakes of the Natron Valley. The authors of the species chose the African-specific version of the Ancient Greek word to reflect the African type locality and the possible relevance of these alkaline lakes to local human culture and history. [2]

Description

Skoliomonads are flagellates, unicellular protists (a type of eukaryote) that use flagella for movement. Their cells are rounded at their anterior end and pointy at their posterior, with a flattened ventral side and a dorsal hump. The ventral side contains a major groove, which is characteristic of other basal eukaryotes such as excavates. The cells are asymmetrical: the left side of the cell contains the majority of the cytoplasm, including the nucleus and various large vacuoles for digestion, often containing bacteria which constitute their prey. The right side is occupied almost entirely by the right edge of the groove. [3] The type isolate, TZLM3-RCL, has been observed forming complex cysts with two walls and a conspicuous plugged pore, something unique among metamonads. [4]

Each cell has two flagella of different lengths, inserted sub-apically and facing the ventral side of the cell. A conspicuous "lip" structure extends from the flagellar insertion along the right side of the ventral groove to the base of the posterior pointy end. The anterior flagellum is around the same length as the cell, and it is pointed forward. The posterior flagellum is twice as long, and features a conspicuously broad flagellar vane around 1 μm wide along the length of the groove, directed away from the cell body. [3]

The ventral groove curves gently to the right as it extends down the cell, and its posterior end has a large opening that gives way to a large cytopharynx underneath its right edge. [5] The cytopharynx, supported by a robust intracellular structure, extends along the dorsal side toward the cell's anterior apex. [6] This is unique to skoliomonads and barthelonids, since the cytopharynx of most known metamonads ( Carpediemonas -like organisms) is short, discrete and points toward the left side of the cells. Skoliomonads are similar to most other metamonads in their big flagellar vane, which barthelonids lack. [4]

Ecology

Skoliomonads are anaerobe microorganisms that feed on bacteria. In particular, Skoliomonas litria is a haloalkaliphilic anaerobe, as it inhabits a hypersaline and alkaline soda lake. [2]

Taxonomy

"barthelonids"

Barthelona isolates

"skoliomonads"

Skoliomonas sp. TZLM3-RCL (Tanzania)

Skoliomonas sp. GEM-RC (Canada)

Skoliomonas sp. Soap18-RC (USA)

Skoliomonas sp. Soap20A-RC (USA)

Skoliomonas litria TZLM1-RC (Tanzania)

Fornicata

Cladogram of skoliomonads based on a SSU rRNA phylogeny published in 2024. [7]

The genus Skoliomonas was described by protistologists Yana Eglit and Alastair G.B. Simpson, from strains of metamonad flagellates isolated from alkaline hypersaline sediments found at various soda lakes: Lake Manyara in Tanzania, Goodenough Lake in British Columbia, Canada, and Soap Lake in Washington state, USA. [8] The isolates were cultivated, observed under light microscopy and transmission electron microscopy, and genetically sequenced in order to discover their phylogenetic position. [9] Following the results, the authors published in 2024 the description of this genus, along with its type and only species Skoliomonas litria. [2]

In phylogenetic analyses using the SSU rRNA gene, a clade composed of Skoliomonas isolates, informally named "skoliomonads", is the sister group to barthelonids, [10] which are in turn closely related to Fornicata within the phylum Metamonada. [11] [12]

Related Research Articles

<span class="mw-page-title-main">Excavata</span> Supergroup of unicellular organisms belonging to the domain Eukaryota

Excavata is an extensive and diverse but paraphyletic group of unicellular Eukaryota. The group was first suggested by Simpson and Patterson in 1999 and the name latinized and assigned a rank by Thomas Cavalier-Smith in 2002. It contains a variety of free-living and symbiotic protists, and includes some important parasites of humans such as Giardia and Trichomonas. Excavates were formerly considered to be included in the now obsolete Protista kingdom. They were distinguished from other lineages based on electron-microscopic information about how the cells are arranged. They are considered to be a basal flagellate lineage.

<span class="mw-page-title-main">Parabasalid</span> Group of flagellated protists

The parabasalids are a group of flagellated protists within the supergroup Excavata. Most of these eukaryotic organisms form a symbiotic relationship in animals. These include a variety of forms found in the intestines of termites and cockroaches, many of which have symbiotic bacteria that help them digest cellulose in woody plants. Other species within this supergroup are known parasites, and include human pathogens.

<span class="mw-page-title-main">Metamonad</span> Phylum of excavate protists

The metamonads are a large group of flagellate amitochondriate microscopic eukaryotes. They include the retortamonads, diplomonads, parabasalids, oxymonads, and a range of more poorly studied taxa, most of which are free-living flagellates. All metamonads are anaerobic, and most members of the four groups listed above are symbiotes or parasites of animals, as is the case with Giardia lamblia which causes diarrhea in mammals.

The Oxymonads are a group of flagellated protists found exclusively in the intestines of animals, mostly termites and other wood-eating insects. Along with the similar parabasalid flagellates, they harbor the symbiotic bacteria that are responsible for breaking down cellulose. There is no evidence for presence of mitochondria in oxymonads and three species have been shown to completely lack any molecular markers of mitochondria.

<span class="mw-page-title-main">Hemimastigophora</span> Group of single-celled organisms

Hemimastigophora is a group of single-celled eukaryotic organisms including the Spironematellidae, first identified in 1988, and the Paramastigidae. Over the next 30 years, different authors proposed placing these organisms in various branches of the eukaryotes. In 2018 Lax et al. reported the first genetic information for Spironemidae, and suggest that they are from an ancient lineage of eukaryotes which constitute a separate clade from all other eukaryotic kingdoms. It may be related to the Telonemia.

<span class="mw-page-title-main">Malawimonadidae</span> Family of protists

Malawimonadidae is a family of unicellular eukaryotes of outsize importance in understanding eukaryote phylogeny.

Carpediemonas is genus of Metamonada, and belongs to the group Excavata. This organism is a unicellular flagellated eukaryote that was first discovered in substrate samples from the Great Barrier Reef. Carpediemonas can be found in anaerobic intertidal sediment, where it feeds on bacteria. A feature of this species is the presence of a feeding groove, a characteristic of the excavates. Like most other metamonads, Carpediemonas does not rely on an aerobic mitochondrion to produce energy. Instead, it contains hydrogenosomes that are used to produce ATP. This organism has two flagella: a posterior one used for feeding on the substrate, and an anterior one that moves in a slower sweeping motion. Carpediemonas is assigned to the fornicates, where similar Carpediemonas-like organisms are used in researching the evolution within excavates. Although Carpediemonas is a member of the metamonads, it is unusual in the sense that it is free-living and has three basal bodies.

Trimastix is a genus of excavate protists, the sole occupant of the order Trimastigida. Trimastix are bacterivorous, free living and anaerobic. It was first observed in 1881 by William Kent. There are few known species, and the genus's role in the ecosystem is largely unknown. However, it is known that they generally live in marine environments within the tissues of decaying organisms to maintain an anoxic environment. Much interest in this group is related to its close association with other members of Preaxostyla. These organisms do not have classical mitochondria, and as such, much of the research involving these microbes is aimed at investigating the evolution of mitochondria.

<span class="mw-page-title-main">Loukozoa</span> Proposed taxon

Loukozoa is a proposed taxon used in some classifications of eukaryotes, consisting of the Metamonada and Malawimonadea. Ancyromonads are closely related to this group, as sister of the entire group, or as sister of the Metamonada. Amorphea may have emerged in this grouping, specifically as sister of the Malawimonads.

<i>Malawimonas</i> Genus of micro-organisms

Malawimonas is genus of unicellular, heterotrophic flagellates with uncertain phylogenetic affinities. They have variably being assigned to Excavata and Loukozoa. Recent studies suggest they may be closely related to the Podiata.

<span class="mw-page-title-main">Jakobid</span>

Jakobids are an order of free-living, heterotrophic, flagellar eukaryotes in the supergroup Excavata. They are small, and can be found in aerobic and anaerobic environments. The order Jakobida, believed to be monophyletic, consists of only twenty species at present, and was classified as a group in 1993. There is ongoing research into the mitochondrial genomes of jakobids, which are unusually large and bacteria-like, evidence that jakobids may be important to the evolutionary history of eukaryotes.

<i>Jakoba</i> Genus of Eukaryotic Organisms

Jakoba is a genus in the taxon Excavata, and currently has a single described species, Jakoba libera described by Patterson in 1990, and named in honour of Dutch botanist Jakoba Ruinen.

<span class="mw-page-title-main">Diaphoretickes</span> Taxon of eukaryotes

Diaphoretickes is a major group of eukaryotic organisms, with over 400,000 species. The majority of the earth's biomass that carries out photosynthesis belongs to Diaphoretickes.

Stygiella /ˌstɪ.d͡ʒiˈɛ.lə/ is a genus of free-living marine flagellates belonging to the family Stygiellidae in the jakobids (excavata).

Anaeramoeba is a genus of anaerobic protists of uncertain phylogenetic position, first described in 2016.

<i>Meteora sporadica</i> Species of deep sea protist

Meteora sporadica is a mysterious free-living protozoan discovered in 2002 during sampling at a depth of 1,230 meters below sea level in the Sporades Basin, part of the Mediterranean Sea. So far it is the only species of the genus Meteora.

<span class="mw-page-title-main">Colponemid</span> Group of predatorial flagellates

Colponemids are free-living alveolates, unicellular flagellates related to dinoflagellates, apicomplexans and ciliates. They are predators of other small eukaryotes, found in freshwater, marine and soil environments. They do not form a solid clade, but a sparse group of deep-branching alveolate lineages.

<i>Paratrimastix pyriformis</i> Species of protists

Paratrimastix pyriformis is a species of free-living (non-parasitic) anaerobic freshwater bacteriovorous flagellated protists formerly known as Trimastix pyriformis and Tetramitus pyriformis.

<i>Ploeotia</i> Genus of flagellates

Ploeotia is a genus of heterotrophic flagellates belonging to the Euglenida, a diverse group of flagellated protists in the phylum Euglenozoa. Species of Ploeotia are composed of rigid cells exhibiting two flagella. The genus was described by Félix Dujardin in 1841.

Barthelona is a genus of anaerobic protists. They are basal eukaryotes closely related to skoliomonads, within the phylum Metamonada. It is a monotypic genus containing the sole species Barthelona vulgaris. Members of this genus are informally known as barthelonids.

References

Citations

Cited literature

  • Eglit, Yana; Williams, Shelby K.; Roger, Andrew J.; Simpson, Alastair G.B. (3 September 2024). "Characterization of Skoliomonas gen. nov., a haloalkaliphilic anaerobe related to barthelonids (Metamonada)". Journal of Eukaryotic Microbiology. 00 (early view): e13048. doi: 10.1111/jeu.13048 . PMID   39225178.
  • Williams, Shelby K.; Jerlström Hultqvist, Jon; Eglit, Yana; Salas-Leiva, Dayana E.; Curtis, Bruce; Orr, Russell J.S.; Stairs, Courtney W.; Atalay, Tuğba N.; MacMillan, Naomi; Simpson, Alastair G.B.; Roger, Andrew J. (9 April 2024). "Extreme mitochondrial reduction in a novel group of free-living metamonads". bioRxiv. doi: 10.1101/2023.05.03.539051 .
  • Yazaki, Euki; Kume, Keitaro; Shiratori, Takashi; Eglit, Yana; Tanifuji, Goro; Harada, Ryo; Simpson, Alastair G.B.; Ishida, Ken-Ichiro; Hashimoto, Tetsuo; Inagaki, Yuji (2 September 2020). "Barthelonids represent a deep-branching metamonad clade with mitochondrion-related organelles predicted to generate no ATP". Proceedings of the Royal Society B: Biological Sciences. 287: 20201538. doi: 10.1098/rspb.2020.1538 . PMC   7542792 .