Parvarchaeota

Last updated

Parvarchaeota
25K15pA9Def4sec Arman 4 Box1.png
Parvarchaeum acidiphilum
Scientific classification
Domain:
Kingdom:
Superphylum:
Phylum:
"Parvarchaeota"

Rinke et al. 2013
Class:
"Parvarchaeia"
Orders
  • JAPDLS01
  • "Jingweiarchaeales"
  • "Parvarchaeales"
  • "Tiddalikarchaeales"

Parvarchaeota is a phylum of archaea belonging to the DPANN archaea. They have been discovered in acid mine drainage waters and later in marine sediments. The cells of these organisms are extremely small consistent with small genomes. Metagenomic techniques allow obtaining genomic sequences from non-cultured organisms, which were applied to determine this phylum. [1]

Contents

The type species is Candidatus Parvarchaeum acidiphilum . They have very small cells, around 400-500 nm, and reduced genomes made up of about 1000 genes. A similar-sized archaea that has been found in the same acidic environments is Candidatus Microarcheum , from the phylum Micrarchaeota. [1] [2]

According to the phylogenetic trees Parvarchaeota may be a sister group of Thermoplasmata within Euryarchaeota [3] or belong to DPANN, [1] although it has also been suggested that all the DPANN archaea belong phylogenetically to Euryarchaeota. [3] [4]

Taxonomy

The currently accepted taxonomy is based on the List of Prokaryotic names with Standing in Nomenclature (LPSN) [5] and National Center for Biotechnology Information (NCBI). [6]

Phylogeny

Phylogeny of "Parvarchaeota". [11] [12] [13]

"Parvarchaeia"
"Tiddalikarchaeales"
"Tiddalikarchaeaceae"

"Ca. Tiddalikarchaeum anstoanum"

"Jingweiarchaeales"
"Jingweiarchaeaceae"

"Ca. Jingweiarchaeum tengchongense"

"JAPDLS01"
"Haiyanarchaeaceae"

"Ca. Haiyanarchaeum thermophilum"

"Parvarchaeales"
"Parvarchaeaceae"

"Ca. Rehaiarchaeum fermentans"

"Ca. Acidifodinimicrobium mancum"

"Ca.  Parvarchaeum"

"Ca. P. paracidiphilum"

"Ca. P. paracidiphilum"

"Ca. P. tengchongense"

See also

Related Research Articles

<i>Nanoarchaeum equitans</i> Species of archaeon

Nanoarchaeum equitans is a species of marine archaea that was discovered in 2002 in a hydrothermal vent off the coast of Iceland on the Kolbeinsey Ridge by Karl Stetter. It has been proposed as the first species in a new phylum, and is the only species within the genus Nanoarchaeum. Strains of this microbe were also found on the Sub-polar Mid Oceanic Ridge, and in the Obsidian Pool in Yellowstone National Park. Since it grows in temperatures approaching boiling, at about 80 °C (176 °F), it is considered to be a thermophile. It grows best in environments with a pH of 6, and a salinity concentration of 2%. Nanoarchaeum appears to be an obligate symbiont on the archaeon Ignicoccus; it must be in contact with the host organism to survive. Nanoarchaeum equitans cannot synthesize lipids but obtains them from its host. Its cells are only 400 nm in diameter, making it the smallest known living organism, and the smallest known archaeon.

<span class="mw-page-title-main">Nanoarchaeota</span> Phylum of archaea

Nanoarchaeota is a proposed phylum in the domain Archaea that currently has only one representative, Nanoarchaeum equitans, which was discovered in a submarine hydrothermal vent and first described in 2002.

<span class="mw-page-title-main">Korarchaeota</span> Proposed phylum within the Archaea

The Korarchaeota is a proposed phylum within the Archaea. The name is derived from the Greek noun koros or kore, meaning young man or young woman, and the Greek adjective archaios which means ancient. They are also known as Xenarchaeota. The name is equivalent to Candidatus Korarchaeota, and they go by the name Xenarchaeota or Xenarchaea as well.

<span class="mw-page-title-main">Euryarchaeota</span> Phylum of archaea

Euryarchaeota is a kingdom of archaea. Euryarchaeota are highly diverse and include methanogens, which produce methane and are often found in intestines; halobacteria, which survive extreme concentrations of salt; and some extremely thermophilic aerobes and anaerobes, which generally live at temperatures between 41 and 122 °C. They are separated from the other archaeans based mainly on rRNA sequences and their unique DNA polymerase.

<span class="mw-page-title-main">Archaeal Richmond Mine acidophilic nanoorganisms</span> Incredibly small, unique extremophile Archaea species found deep in an acidic mine

Archaeal Richmond Mine acidophilic nanoorganisms (ARMAN) were first discovered in an extremely acidic mine located in northern California (Richmond Mine at Iron Mountain) by Brett Baker in Jill Banfield's laboratory at the University of California Berkeley. These novel groups of archaea named ARMAN-1, ARMAN-2 (Candidatus Micrarchaeum acidiphilum ARMAN-2), and ARMAN-3 were missed by previous PCR-based surveys of the mine community because the ARMANs have several mismatches with commonly used PCR primers for 16S rRNA genes. Baker et al. detected them in a later study using shotgun sequencing of the community. The three groups were originally thought to represent three unique lineages deeply branched within the Euryarchaeota, a subgroup of the Archaea. However, based on a more complete archaeal genomic tree, they were assigned to a new superphylum named DPANN. The ARMAN groups now comprise deeply divergent phyla named Micrarchaeota and Parvarchaeota. Their 16S rRNA genes differ by as much as 17% between the three groups. Prior to their discovery, all of the Archaea shown to be associated with Iron Mountain belonged to the order Thermoplasmatales (e.g., Ferroplasma acidarmanus).

<span class="mw-page-title-main">Archaea</span> Domain of organisms

Archaea is a domain of organisms. Traditionally, Archaea only included its prokaryotic members, but this sense has been found to be paraphyletic, as eukaryotes are now known to have evolved from archaea. Even though the domain Archaea includes eukaryotes, the term "archaea" in English still generally refers specifically to prokaryotic members of Archaea. Archaea were initially classified as bacteria, receiving the name archaebacteria, but this term has fallen out of use.

<span class="mw-page-title-main">Nitrososphaerota</span> Phylum of archaea

The Nitrososphaerota are a phylum of the Archaea proposed in 2008 after the genome of Cenarchaeum symbiosum was sequenced and found to differ significantly from other members of the hyperthermophilic phylum Thermoproteota. Three described species in addition to C. symbiosum are Nitrosopumilus maritimus, Nitrososphaera viennensis, and Nitrososphaera gargensis. The phylum was proposed in 2008 based on phylogenetic data, such as the sequences of these organisms' ribosomal RNA genes, and the presence of a form of type I topoisomerase that was previously thought to be unique to the eukaryotes. This assignment was confirmed by further analysis published in 2010 that examined the genomes of the ammonia-oxidizing archaea Nitrosopumilus maritimus and Nitrososphaera gargensis, concluding that these species form a distinct lineage that includes Cenarchaeum symbiosum. The lipid crenarchaeol has been found only in Nitrososphaerota, making it a potential biomarker for the phylum. Most organisms of this lineage thus far identified are chemolithoautotrophic ammonia-oxidizers and may play important roles in biogeochemical cycles, such as the nitrogen cycle and the carbon cycle. Metagenomic sequencing indicates that they constitute ~1% of the sea surface metagenome across many sites.

Nitrospirota is a phylum of bacteria. It includes multiple genera, such as Nitrospira, the largest. The first member of this phylum, Nitrospira marina, was discovered in 1985. The second member, Nitrospira moscoviensis, was discovered in 1995.

Nanohaloarchaea is a clade of diminutive archaea with small genomes and limited metabolic capabilities, belonging to the DPANN archaea. They are ubiquitous in hypersaline habitats, which they share with the extremely halophilic haloarchaea.

The "Aigarchaeota" are a proposed archaeal phylum of which the main representative is Caldiarchaeum subterraneum. It is not yet clear if this represents a new phylum or a Nitrososphaerota order, since the genome of Caldiarchaeum subterraneum encodes several Nitrososphaerota-like features. The name "Aigarchaeota" comes from the Greek αυγή, avgí, meaning "dawn" or "aurora", for the intermediate features of hyperthermophilic and mesophilic life during the evolution of its lineage.

<span class="mw-page-title-main">Lokiarchaeota</span> Phylum of archaea

Lokiarchaeota is a proposed phylum of the Archaea. The phylum includes all members of the group previously named Deep Sea Archaeal Group, also known as Marine Benthic Group B. Lokiarchaeota is part of the superphylum Asgard containing the phyla: Lokiarchaeota, Thorarchaeota, Odinarchaeota, Heimdallarchaeota, and Helarchaeota. A phylogenetic analysis disclosed a monophyletic grouping of the Lokiarchaeota with the eukaryotes. The analysis revealed several genes with cell membrane-related functions. The presence of such genes support the hypothesis of an archaeal host for the emergence of the eukaryotes; the eocyte-like scenarios.

Hadesarchaea, formerly called the South-African Gold Mine Miscellaneous Euryarchaeal Group, are a class of thermophile microorganisms that have been found in deep mines, hot springs, marine sediments, and other subterranean environments.

<span class="mw-page-title-main">DPANN</span> A superphylum of Archaea grouping taxa that display various environmental and metabolic features

DPANN is a superphylum of Archaea first proposed in 2013. Many members show novel signs of horizontal gene transfer from other domains of life. They are known as nanoarchaea or ultra-small archaea due to their smaller size (nanometric) compared to other archaea.

<span class="mw-page-title-main">Asgard (Archaea)</span> Proposed superphylum of Archaea

Asgard or Asgardarchaeota is a proposed superphylum belonging to the domain Archaea that contain eukaryotic signature proteins. It appears that the eukaryotes, the domain that contains the animals, plants, and fungi, emerged within the Asgard, in a branch containing the Heimdallarchaeota. This supports the two-domain system of classification over the three-domain system.

<span class="mw-page-title-main">Atribacterota</span> Phylum of bacteria

Atribacterota is a phylum of bacteria, which are common in anoxic sediments rich in methane. They are distributed worldwide and in some cases abundant in anaerobic marine sediments, geothermal springs, and oil deposits. Genetic analyzes suggest a heterotrophic metabolism that gives rise to fermentation products such as acetate, ethanol, and CO2. These products in turn can support methanogens within the sediment microbial community and explain the frequent occurrence of Atribacterota in methane-rich anoxic sediments. According to phylogenetic analysis, Atribacterota appears to be related to several thermophilic phyla within Terrabacteria or may be in the base of Gracilicutes. According to research, Atribacterota shows patterns of gene expressions which consists of fermentative, acetogenic metabolism. These expressions let Atribacterota to be able to create catabolic and anabolic functions which are necessary to generate cellular reproduction, even when the energy levels are limited due to the depletion of dissolved oxygen in the areas of sea waters, fresh waters, or ground waters.

<span class="mw-page-title-main">Candidate phyla radiation</span> A large evolutionary radiation of bacterial candidate phyla and superphyla

The candidate phyla radiation is a large evolutionary radiation of bacterial lineages whose members are mostly uncultivated and only known from metagenomics and single cell sequencing. They have been described as nanobacteria or ultra-small bacteria due to their reduced size (nanometric) compared to other bacteria.

Modulibacteria(Moduliflexota) is a bacterial phylum formerly known as KS3B3 or GN06. It is a candidate phylum, meaning there are no cultured representatives of this group. Members of the Modulibacteria phylum are known to cause fatal filament overgrowth (bulking) in high-rate industrial anaerobic wastewater treatment bioreactors.

<span class="mw-page-title-main">NC10 phylum</span> Phylum of bacteria

NC10 is a bacterial phylum with candidate status, meaning its members remain uncultured to date. The difficulty in producing lab cultures may be linked to low growth rates and other limiting growth factors.

References

  1. 1 2 3 Rinke C, Schwientek P, Sczyrba A, Ivanova NN, Anderson IJ, Cheng JF, Darling A, Malfatti S, Swan BK, Gies EA, Dodsworth JA, Hedlund BP, Tsiamis G, Sievert SM, Liu WT, Eisen JA, Hallam SJ, Kyrpides NC, Stepanauskas R, Rubin EM, Hugenholtz P, Woyke T (July 25, 2013). "Insights into the phylogeny and coding potential of microbial dark matter". Nature. 499, 431–437 (2013) (7459): 431–437. Bibcode:2013Natur.499..431R. doi: 10.1038/nature12352 . hdl: 10453/27467 . PMID   23851394.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  2. Brett J. Baker, Gregory J. Dick. Omic, Approaches in Microbial Ecology:Charting the Unknown Analysis of wholecommunity sequence data is unveiling the diversity and function of specific microbial groups within uncultured phyla and across entire microbial ecosystems. Academia.edu.
  3. 1 2 Petitjean, C.; Deschamps, P.; López-García, P.; Moreira, D. (2014). "Rooting the domain Archaea by phylogenomic analysis supports the foundation of the new kingdom Proteoarchaeota". Genome Biol. Evol. 7 (1): 191–204. doi:10.1093/gbe/evu274. PMC   4316627 . PMID   25527841.
  4. Cavalier-Smith, Thomas; Chao, Ema E-Yung (2020). "Multidomain ribosomal protein trees and the planctobacterial origin of neomura (Eukaryotes, archaebacteria)". Protoplasma. 257 (3): 621–753. doi:10.1007/s00709-019-01442-7. PMC   7203096 . PMID   31900730.
  5. J.P. Euzéby. "Parvarchaeota". List of Prokaryotic names with Standing in Nomenclature (LPSN). Retrieved 2021-06-27.
  6. Sayers; et al. "Parvarchaeota". National Center for Biotechnology Information (NCBI) taxonomy database. Retrieved 2021-03-20.
  7. 1 2 3 4 Vázquez-Campos, Xabier; Kinsela, Andrew S.; Bligh, Mark W.; Payne, Timothy E.; Wilkins, Marc R.; Waite, T. David (2021). "Genomic Insights Into the Archaea Inhabiting an Australian Radioactive Legacy Site". Frontiers in Microbiology. 12: 732575. doi: 10.3389/fmicb.2021.732575 . ISSN   1664-302X. PMC   8561730 . PMID   34737728.
  8. 1 2 Rinke, Christian; Chuvochina, Maria; Mussig, Aaron J.; Chaumeil, Pierre-Alain; Davin, Adrian A.; Waite, David W.; Whitman, William B.; Parks, Donovan H.; Hugenholtz, Philip (2021-02-17). "Resolving widespread incomplete and uneven archaeal classifications based on a rank-normalized genome-based taxonomy". Nature Microbiology. 6 (7): 946–959. bioRxiv   10.1101/2020.03.01.972265 . doi:10.1038/s41564-021-00918-8. PMID   34155373. S2CID   231984712.
  9. 1 2 3 Luo, Zhen-Hao; Li, Qi; Lai, Yan; Chen, Hao; Liao, Bin; Huang, Li-nan (2020). "Diversity and Genomic Characterization of a Novel Parvarchaeota Family in Acid Mine Drainage Sediments". Frontiers in Microbiology. 11: 612257. doi: 10.3389/fmicb.2020.612257 . ISSN   1664-302X. PMC   7779479 . PMID   33408709.
  10. 1 2 3 Baker, Brett J.; Comolli, Luis R.; Dick, Gregory J.; Hauser, Loren J.; Hyatt, Doug; Dill, Brian D.; Land, Miriam L.; VerBerkmoes, Nathan C.; Hettich, Robert L.; Banfield, Jillian F. (2010-05-11). "Enigmatic, ultrasmall, uncultivated Archaea". Proceedings of the National Academy of Sciences. 107 (19): 8806–8811. Bibcode:2010PNAS..107.8806B. doi: 10.1073/pnas.0914470107 . ISSN   0027-8424. PMC   2889320 . PMID   20421484.
  11. "GTDB release 09-RS220". Genome Taxonomy Database . Retrieved 10 May 2024.
  12. "ar53_r220.sp_label". Genome Taxonomy Database . Retrieved 10 May 2024.
  13. "Taxon History". Genome Taxonomy Database . Retrieved 10 May 2024.