Fibrobacterota

Last updated

Fibrobacterota
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Bacteria
Clade: FCB group
Phylum: Fibrobacterota
Garrity & Holt 2021 [1]
Classes
Synonyms
  • "Fibrobacteraeota" Oren et al. 2015
  • "Fibrobacteres" Garrity and Holt 2001
  • "Fibrobacterota" Whitman et al. 2018
  • "Raymondbacteria" Anantharaman et al. 2016

Fibrobacterota is a small bacterial phylum which includes many of the major rumen bacteria, allowing for the degradation of plant-based cellulose in ruminant animals. Members of this phylum were categorized in other phyla. The genus Fibrobacter (the only genus of Fibrobacterota) was removed from the genus Bacteroides in 1988. [2]

Contents

Phylogeny and comparative genomic studies

Although Fibrobacterota is currently recognized as a distinct phylum, phylogenetic studies based RpoC and Gyrase B protein sequences, indicate that Fibrobacter succinogenes is closely related to the species from the phyla Bacteroidetes and Chlorobi. [3] The species from these three phyla also branch in the same position based upon conserved signature indels in a number of important proteins. [4] Lastly and most importantly, comparative genomic studies have identified two conserved signature indels (a 5-7 amino acid insert in the RpoC protein and a 13-16 amino acid insertion in serine hydroxymethyltransferase) and one signature protein (PG00081) that are uniquely shared by all of the species from these three phyla. [5] All of these results provide compelling evidence that the species from these three phyla shared a common ancestor exclusive of all other bacteria and it has been proposed that they should all recognized as part of a single “FCB”superphylum. [3] [5]

Phylogeny

Phylogeny of Fibrobacterota.

16S rRNA based LTP_12_2021 [6] [7] [8] 120 single copy marker proteins based GTDB 08-RS214 [9] [10] [11]
Chitinivibrionia

Taxonomy

The currently accepted taxonomy is based on the List of Prokaryotic names with Standing in Nomenclature (LSPN) [12] and the National Center for Biotechnology Information (NCBI). [13]

phylum Fibrobacterota and some of its phylogenetic neighbours Fibrobacteres.png
phylum Fibrobacterota and some of its phylogenetic neighbours

Distribution

The phylum Fibrobacterota is considered to be closely related to the CFB [Cytophaga-Flavibacterium-Bacteroidota]. [5] It contains the genus Fibrobacter, which has strains present in the guts of many mammals including cattle and pigs. [14] The two described species in this genus namely, Fibrobacter succinogenes and Fibrobacter intestinalis are important members of fibrolytic communities in mammalian guts and have received a lot of attention in recent decades due to the long-standing interest microbes capable of degrading plant fiber.

Molecular evidence based on the amplification of 16rRNA genes from various environments suggest that the phylum is much more widespread than previously thought. [15] [16] Most of the clones from mammalian environments group along with the known isolates in what has been called subphylum 1. [16] Members of subphylum 2 however, have so far been found only in the gut of termites. [16] [17] and in some litter-feeding cockroaches. [18] The predominance of subphylum 2 in cellulolytic fibre-associated bacterial communities in hindguts of wood-feeding Nasutitermes corniger suggests that they play an important role in the breakdown of plant material in higher termites. [19]

See also

Related Research Articles

<span class="mw-page-title-main">Spirochaete</span> Phylum of bacteria

A spirochaete or spirochete is a member of the phylum Spirochaetota, which contains distinctive diderm (double-membrane) Gram-negative bacteria, most of which have long, helically coiled cells. Spirochaetes are chemoheterotrophic in nature, with lengths between 3 and 500 μm and diameters around 0.09 to at least 3 μm.

The Aquificota phylum is a diverse collection of bacteria that live in harsh environmental settings. The name Aquificota was given to this phylum based on an early genus identified within this group, Aquifex, which is able to produce water by oxidizing hydrogen. They have been found in springs, pools, and oceans. They are autotrophs, and are the primary carbon fixers in their environments. These bacteria are Gram-negative, non-spore-forming rods. They are true bacteria as opposed to the other inhabitants of extreme environments, the Archaea.

The Chloroflexia are a class of bacteria in the phylum Chloroflexota. Chloroflexia are typically filamentous, and can move about through bacterial gliding. It is named after the order Chloroflexales.

<span class="mw-page-title-main">Bacteroidota</span> Phylum of Gram-negative bacteria

The phylum Bacteroidota is composed of three large classes of Gram-negative, nonsporeforming, anaerobic or aerobic, and rod-shaped bacteria that are widely distributed in the environment, including in soil, sediments, and sea water, as well as in the guts and on the skin of animals.

<span class="mw-page-title-main">Verrucomicrobiota</span> Phylum of bacteria

Verrucomicrobiota is a phylum of Gram-negative bacteria that contains only a few described species. The species identified have been isolated from fresh water, marine and soil environments and human faeces. A number of as-yet uncultivated species have been identified in association with eukaryotic hosts including extrusive explosive ectosymbionts of protists and endosymbionts of nematodes from genus Xiphinema, residing in their gametes. The verrucomicrobial bacterium Akkermansia muciniphila is a human intestinal symbiotic bacterium that is considered as a promising probiotic.

The Thermotogota are a phylum of the domain Bacteria. The phylum contains a single class, Thermotogae. The phylum Thermotogota is composed of Gram-negative staining, anaerobic, and mostly thermophilic and hyperthermophilic bacteria.

<i>Chlorobium</i> Genus of bacteria

Chlorobium is a genus of green sulfur bacteria. They are photolithotrophic oxidizers of sulfur and most notably utilise a noncyclic electron transport chain to reduce NAD+. Photosynthesis is achieved using a Type 1 Reaction Centre using bacteriochlorophyll (BChl) a. Two photosynthetic antenna complexes aid in light absorption: the Fenna-Matthews-Olson complex, and the chlorosomes which employ mostly BChl c, d, or e. Hydrogen sulfide is used as an electron source and carbon dioxide its carbon source.

<span class="mw-page-title-main">Streptomycetaceae</span> Family of bacteria

Streptomycetaceae is a family of the class Actinomycetota, making up the monotypic order Streptomycetales. It includes the important genus Streptomyces. This was the original source of many antibiotics, namely streptomycin, the first antibiotic against tuberculosis.

<span class="mw-page-title-main">Flavobacteriales</span> Order of bacteria

The order Flavobacteriales comprises several families of environmental bacteria.

Fibrobacter succinogenes is a cellulolytic bacterium species in the genus Fibrobacter. It is present in the rumen of cattle. F. succinogenes is a gram negative, rod-shaped, obligate anaerobe that is a major contributor to cellulose digestion. Since its discovery in the 1950s, it has been studied for its role in herbivore digestion and cellulose fermentation, which can be utilized in biofuel production.

The Synergistota is a phylum of anaerobic bacteria that show Gram-negative staining and have rod/vibrioid cell shape. Although Synergistota have a diderm cell envelope, the genes for various proteins involved in lipopolysaccharides biosynthesis have not yet been detected in Synergistota, indicating that they may have an atypical outer cell envelope. The Synergistota inhabit a majority of anaerobic environments including animal gastrointestinal tracts, soil, oil wells, and wastewater treatment plants and they are also present in sites of human diseases such as cysts, abscesses, and areas of periodontal disease. Due to their presence at illness related sites, the Synergistota are suggested to be opportunistic pathogens but they can also be found in healthy individuals in the microbiome of the umbilicus and in normal vaginal flora. Species within this phylum have also been implicated in periodontal disease, gastrointestinal infections and soft tissue infections. Other species from this phylum have been identified as significant contributors in the degradation of sludge for production of biogas in anaerobic digesters and are potential candidates for use in renewable energy production through their production of hydrogen gas. All of the known Synergistota species and genera are presently part of a single class (Synergistia), order (Synergistiales), and family (Synergistaceae).

The Chloroflexota are a phylum of bacteria containing isolates with a diversity of phenotypes, including members that are aerobic thermophiles, which use oxygen and grow well in high temperatures; anoxygenic phototrophs, which use light for photosynthesis ; and anaerobic halorespirers, which uses halogenated organics as electron acceptors.

Tannerella forsythia is an anaerobic, Gram-negative bacterial species of the Bacteroidota phylum. It has been implicated in periodontal diseases and is a member of the red complex of periodontal pathogens. T. forsythia was previously named Bacteroides forsythus and Tannerella forsythensis.

<span class="mw-page-title-main">Sphingobacteria (phylum)</span> Phylum of bacteria

The FCB group is a superphylum of bacteria named after the main member phyla Fibrobacterota, Chlorobiota, and Bacteroidota. The members are considered to form a clade due to a number of conserved signature indels.

<span class="mw-page-title-main">Bacterial phyla</span> Phyla or divisions of the domain Bacteria

Bacterial phyla constitute the major lineages of the domain Bacteria. While the exact definition of a bacterial phylum is debated, a popular definition is that a bacterial phylum is a monophyletic lineage of bacteria whose 16S rRNA genes share a pairwise sequence identity of ~75% or less with those of the members of other bacterial phyla.

<span class="mw-page-title-main">-bacter</span> Suffix used in microbiology

The suffix -bacter is in microbiology for many genera and is intended to mean "bacteria".

Candidate phylum TG3 is a candidate phylum that is closely related to the phylum Fibrobacterota based on 16S rRNA gene phylogeny. Originally thought to be composed solely of sequences from termite guts, it was later found to be more widespread in nature.

There are several models of the Branching order of bacterial phyla, one of these was proposed in 1987 paper by Carl Woese.

Conserved signature inserts and deletions (CSIs) in protein sequences provide an important category of molecular markers for understanding phylogenetic relationships. CSIs, brought about by rare genetic changes, provide useful phylogenetic markers that are generally of defined size and they are flanked on both sides by conserved regions to ensure their reliability. While indels can be arbitrary inserts or deletions, CSIs are defined as only those protein indels that are present within conserved regions of the protein.

Chitinispirillum is a genus of bacteria from the family of Chitinispirillaceae with one known species. Chitinispirillum alkaliphilum has been isolated from hypersaline lake sediments from the Wadi el Natrun valley in Egypt.

References

  1. Oren A, Garrity GM (2021). "Valid publication of the names of forty-two phyla of prokaryotes". Int J Syst Evol Microbiol. 71 (10): 5056. doi: 10.1099/ijsem.0.005056 . PMID   34694987. S2CID   239887308.
  2. Montgomery L, Flesher B, Stahl D (1988). "Transfer of Bacteroides succinogenes (Hungate) to Fibrobacter gen. nov. as Fibrobacter succinogenes comb. nov. and description of Fibrobacter intestinalis sp. nov". Int. J. Syst. Bacteriol. 38 (4): 430–435. doi: 10.1099/00207713-38-4-430 .
  3. 1 2 Gupta, R. S. (2004). "The phylogeny and signature sequences characteristics of Fibrobacteres, Chlorobi, and Bacteroidetes". Critical Reviews in Microbiology. 30 (2): 123–140. doi:10.1080/10408410490435133. PMID   15239383. S2CID   24565648.
  4. Griffiths, E; Gupta, RS (2001). "The use of signature sequences in different proteins to determine the relative branching order of bacterial divisions: evidence that Fibrobacter diverged at a similar time to Chlamydia and the Cytophaga- Flavobacterium-Bacteroides division". Microbiology. 147 (9): 2611–22. doi: 10.1099/00221287-147-9-2611 . PMID   11535801.
  5. 1 2 3 Gupta, R. S.; Lorenzini, E. (2007). "Phylogeny and molecular signatures (conserved proteins and indels) that are specific for the Bacteroidetes and Chlorobi species". BMC Evolutionary Biology. 7: 71. doi: 10.1186/1471-2148-7-71 . PMC   1887533 . PMID   17488508.
  6. "The LTP" . Retrieved 23 February 2021.
  7. "LTP_all tree in newick format" . Retrieved 23 February 2021.
  8. "LTP_12_2021 Release Notes" (PDF). Retrieved 23 February 2021.
  9. "GTDB release 08-RS214". Genome Taxonomy Database . Retrieved 10 May 2023.
  10. "bac120_r214.sp_label". Genome Taxonomy Database . Retrieved 10 May 2023.
  11. "Taxon History". Genome Taxonomy Database . Retrieved 10 May 2023.
  12. Euzéby JP. "Fibrobacteres". List of Prokaryotic names with Standing in Nomenclature (LPSN). Retrieved 2021-03-20.
  13. Sayers. "Fibrobacteres". National Center for Biotechnology Information (NCBI) taxonomy database. Retrieved 2021-03-20.
  14. Qi, M.; Nelson, K.E.; Daugherty, S.C.; Nelson, W.C.; Hance, I.R.; Morrison, M.; Forsberg, C.W. (2005). "Novel molecular features of the fibrolytic intestinal bacterium Fibrobacter intestinalis not shared with Fibrobacter succinogenes as determined by suppressive subtractive hybridization". Journal of Bacteriology. 187 (11): 3739–3751. doi:10.1128/jb.187.11.3739-3751.2005. PMC   1112041 . PMID   15901698.
  15. McDonald, JE; Lockhart, RJ; Cox, MJ; Allison, HE; McCarthy, AJ (2008). "Detection of novel Fibrobacter populations in landfill sites and determination of their relative abundance via quantitative PCR". Environmental Microbiology. 10 (5): 1310–1319. doi:10.1111/j.1462-2920.2007.01544.x. PMID   18266756.
  16. 1 2 3 Hongoh, Y.; Deevong, P.; Hattori, S.; Inoue, T.; Noda, S.; Noparatnaraporn, N.; Kudo, T.; Ohkuma, M. (2006). "Phylogenetic diversity, localization, and cell morphologies of members of the candidate phylum TG3 and a subphylum in the phylum Fibrobacteres, recently discovered bacterial groups dominant in termite guts". Applied and Environmental Microbiology. 72 (10): 6780–6788. Bibcode:2006ApEnM..72.6780H. doi:10.1128/aem.00891-06. PMC   1610327 . PMID   17021231.
  17. Mikaelyan, A.; Dietrich, C.; Köhler, T.; Poulsen, M.; Sillam-Dussès, D.; Brune, A. (2015). "Diet is the primary determinant of bacterial community structure in the guts of higher termites". Molecular Ecology. 24 (20): 5824–5895. doi:10.1111/mec.13376. PMID   26348261. S2CID   206182668.
  18. Mikaelyan, A.; Köhler, T.; Lampert, N.; Rohland, J.; Boga, H.; Meuser, K.; Brune, A. (2015). "Classifying the bacterial gut microbiota of termites and cockroaches: A curated phylogenetic reference database (DictDb)". Systematic and Applied Microbiology. 38 (7): 472–482. doi:10.1016/j.syapm.2015.07.004. PMID   26283320.
  19. Mikaelyan, A.; Strassert, J.; Tokuda, G.; Brune, A. (2014). "The fibre-associated cellulolytic bacterial community in the hindgut of wood-feeding higher termites (Nasutitermes spp.)". Environmental Microbiology. 16 (9): 2711–2722. doi:10.1111/1462-2920.12425.