Hydrobacteria | |
---|---|
Escherichia coli cells magnified 25,000 times | |
Scientific classification | |
Domain: | Bacteria |
Clade: | Hydrobacteria Battistuzzi and Hedges 2009 [1] |
Superphyla/Phyla | |
Synonyms | |
|
Hydrobacteria is a taxon containing approximately one-third of prokaryote species, mostly gram-negative bacteria and their relatives. [1] It was found to be the closest relative of an even larger group of Bacteria, Terrabacteria, which are mostly gram-positive bacteria. [2] [1] The name Hydrobacteria (hydro = "water") refers to the moist environment inferred for the common ancestor of those species. In contrast, species of Terrabacteria possess adaptations for life on land. [2] [1] Since 2024, the only validly published name for this group is Pseudomonadati (there used to be none, because no levels above phylum could exist in earlier verions of the Prokaryotic Code). [3]
The content of Hydrobacteria has grown to include these superphyla and phyla: Acidobacteriota, Aquificota, Bdellovibrionota, Campylobacterota, Deferribacterota, Dependentiae, Desulfobacterota, Desulfuromonadota, Elusimicrobiota, FCB superphylum, Myxococcota, Nitrospirota, Proteobacteria, PVC superphylum, and Spirochaetota. [4] [5]
Some unrooted molecular phylogenetic analyses [6] [7] have not supported this dichotomy of Terrabacteria and Hydrobacteria, but the most recent genomic analyses, [4] [5] including those that have focused on rooting the tree, [4] have found these two groups to be monophyletic.
Hydrobacteria and Terrabacteria were inferred to have diverged approximately 3 billion years ago, suggesting that land (continents) had been colonized by prokaryotes at that time. [1] Together, Hydrobacteria and Terrabacteria form a large group containing 97% of prokaryotes and 99% of all species of Bacteria known by 2009, and placed in the taxon Selabacteria, in allusion to their phototrophic abilities (selas = light). [8] Currently, the bacterial phyla that are outside of Hydrobacteria + Terrabacteria, and thus justifying the taxon Selabacteria, are debated and may or may not include Fusobacteria. [4] [5]
"Gracilicutes," which was described in 1978 by Gibbons and Murray, [9] is sometimes used in place of Hydrobacteria. However, "Gracilicutes" included cyanobacteria (a member of Terrabacteria) and was not constructed under the now generally accepted three-domain system. [9] More recently, a redefinition of "Gracilicutes" was proposed [10] but it did not include a molecular phylogeny or statistical analyses. Also, it did not follow the three-domain system, claiming instead that the lineage of eukaryotes + Archaea is nested within Bacteria as a close relative of Actinomycetota, a tree not supported in any molecular phylogeny.
The definition of two major divisions within the domain Bacteria, Hydrobacteria and Terrabacteria, has come largely from rooted phylogenetic analyses of genomes. [2] [1] [4] [5] Unrooted analyses have not fully supported this division, [7] [6] drawing attention to the importance of rooted trees of life.
The two recent analyses of bacterial phylogeny both supported the division of Hydrobacteria and Terrabacteria. [4] [5] However, they interpreted the evolution of the cell wall differently, with one concluding that the last common ancestor of Bacteria was a monoderm (gram-positive bacteria [4] ) and the other concluding that it was a diderm (gram-negative bacteria [5] ). The following tree is redrawn from one of those two recent studies, [4] showing the phylogeny of bacterial phyla and superphyla, with the position of Fusobacteria being unresolved and DST being the closest relative of Terrabacteria:
In bacteriology, gram-positive bacteria are bacteria that give a positive result in the Gram stain test, which is traditionally used to quickly classify bacteria into two broad categories according to their type of cell wall.
Gram-negative bacteria are bacteria that, unlike gram-positive bacteria, do not retain the crystal violet stain used in the Gram staining method of bacterial differentiation. Their defining characteristic is their cell envelope, which consists of a thin peptidoglycan cell wall sandwiched between an inner (cytoplasmic) membrane and an outer membrane. These bacteria are found in all environments that support life on Earth.
The Aquificota phylum is a diverse collection of bacteria that live in harsh environmental settings. The name Aquificota was given to this phylum based on an early genus identified within this group, Aquifex, which is able to produce water by oxidizing hydrogen. They have been found in springs, pools, and oceans. They are autotrophs, and are the primary carbon fixers in their environments. These bacteria are Gram-negative, non-spore-forming rods. They are true bacteria as opposed to the other inhabitants of extreme environments, the Archaea.
The phylum Bacteroidota is composed of three large classes of Gram-negative, nonsporeforming, anaerobic or aerobic, and rod-shaped bacteria that are widely distributed in the environment, including in soil, sediments, and sea water, as well as in the guts and on the skin of animals.
The periplasm is a concentrated gel-like matrix in the space between the inner cytoplasmic membrane and the bacterial outer membrane called the periplasmic space in Gram-negative bacteria. Using cryo-electron microscopy it has been found that a much smaller periplasmic space is also present in Gram-positive bacteria, between cell wall and the plasma membrane. The periplasm may constitute up to 40% of the total cell volume of gram-negative bacteria, but is a much smaller percentage in gram-positive bacteria.
The Thermotogota are a phylum of the domain Bacteria. The phylum contains a single class, Thermotogae. The phylum Thermotogota is composed of Gram-negative staining, anaerobic, and mostly thermophilic and hyperthermophilic bacteria. It's the sole phylum in the kingdom Thermotogati.
Gracilicutes is a clade in bacterial phylogeny.
The PVC superphylum is a superphylum of bacteria named after its three important members, Planctomycetota, Verrucomicrobiota, and Chlamydiota. Cavalier-Smith postulated that the PVC bacteria probably lost or reduced their peptidoglycan cell wall twice. It has been hypothesised that a member of the PVC clade might have been the host cell in the endosymbiotic event that gave rise to the first proto-eukaryotic cell.
Eurybacteria is a taxon created by Cavalier-Smith, which includes several groups of Gram-negative bacteria. In this model, it is the ancestor of gram positive bacteria. Their endospores are characterized by producing and presenting external flagella or mobility by bacterial displacement.
Terrabacteria is a taxon containing approximately two-thirds of prokaryote species, including those in the gram positive phyla as well as the phyla "Cyanobacteria", Chloroflexota, and Deinococcota.
Bacterial phyla constitute the major lineages of the domain Bacteria. While the exact definition of a bacterial phylum is debated, a popular definition is that a bacterial phylum is a monophyletic lineage of bacteria whose 16S rRNA genes share a pairwise sequence identity of ~75% or less with those of the members of other bacterial phyla.
Bacterial taxonomy is subfield of taxonomy devoted to the classification of bacteria specimens into taxonomic ranks.
There are several models of the Branching order of bacterial phyla, one of these was proposed in 1987 paper by Carl Woese.
There are several models of the Branching order of bacterial phyla, one of these was proposed in 2004 by Battistuzzi and Hedges, note the coinage of the taxa Terrabacteria and Hydrobacteria.
There are several models of the Branching order of bacterial phyla, one of these was proposed in 2001 by Gupta based on conserved indels or protein, termed "protein signatures", an alternative approach to molecular phylogeny. Some problematic exceptions and conflicts are present to these conserved indels, however, they are in agreement with several groupings of classes and phyla. One feature of the cladogram obtained with this method is the clustering of cell wall morphology from monoderms to transitional diderms to traditional diderms.
There are several models of the Branching order of bacterial phyla, one of these was proposed in 2002 and 2004 by Thomas Cavalier-Smith. In this frame of work, the branching order of the major lineage of bacteria are determined based on some morphological characters, such as cell wall structure, and not based on the molecular evidence.
Conserved signature inserts and deletions (CSIs) in protein sequences provide an important category of molecular markers for understanding phylogenetic relationships. CSIs, brought about by rare genetic changes, provide useful phylogenetic markers that are generally of defined size and they are flanked on both sides by conserved regions to ensure their reliability. While indels can be arbitrary inserts or deletions, CSIs are defined as only those protein indels that are present within conserved regions of the protein.
Prokaryotic ubiquitin-like protein (Pup) is a functional analog of ubiquitin found in the prokaryote Mycobacterium tuberculosis. Like ubiquitin, Pup serves to direct proteins to the proteasome for degradation in the Pup-proteasome system (PPS). However, the enzymology of ubiquitylation and pupylation is different, owing to their distinct evolutionary origins. In contrast to the three-step reaction of ubiquitylation, pupylation requires only two steps, and thus only two enzymes are involved in pupylation. The enzymes involved in pupylation are descended from glutamine synthetase.
The eocyte hypothesis in evolutionary biology proposes that the eukaryotes originated from a group of prokaryotes called eocytes. After his team at the University of California, Los Angeles discovered eocytes in 1984, James A. Lake formulated the hypothesis as "eocyte tree" that proposed eukaryotes as part of archaea. Lake hypothesised the tree of life as having only two primary branches: prokaryotes, which include Bacteria and Archaea, and karyotes, that comprise Eukaryotes and eocytes. Parts of this early hypothesis were revived in a newer two-domain system of biological classification which named the primary domains as Archaea and Bacteria.
The candidate phyla radiation is a large evolutionary radiation of bacterial lineages whose members are mostly uncultivated and only known from metagenomics and single cell sequencing. They have been described as nanobacteria or ultra-small bacteria due to their reduced size (nanometric) compared to other bacteria.