Placental microbiome

Last updated
Placenta and its tissue layers Gray39.png
Placenta and its tissue layers

The placental microbiome is the nonpathogenic, commensal bacteria claimed to be present in a healthy human placenta and is distinct from bacteria that cause infection and preterm birth in chorioamnionitis. [1] Until recently, the healthy placenta was considered to be a sterile organ but now genera and species have been identified that reside in the basal layer. [2] [1]

Contents

It should be stressed that the evidence for a placental microbiome is controversial. [3] [4] Most studies supporting the existence of a placental microbiome lack the appropriate experimental controls, and it has been found that contamination is most likely responsible for reports of a placental microbiome. [3] [5]

The placental microbiome more closely resembles that of the oral microbiome than either the vaginal or rectal microbiome. [1]

Bacterial species and genera

Culturable and non-culturable bacterial species in the placenta obtained following normal term pregnancy have been identified.

Binomial nameCommensalTransientPotential
pathogen
References
Prevotella tannerae xx [6] [7] [8]
Bacillota spp.xx [9] [10]
Mycoplasmatota spp.xx [9]
Fusobacterium nucleatum xx [11] [12]
Prevotella tanerae x
Bacteroides spp.xx [10]
Fusobacterium spp.xx
Streptomyces avermitilis x [10]
Neisseria polysaccharea x
Neisseria lactamica x
Pseudomonadota spp.x [9] [10]
Bacteroidota spp.x [9]
Escherichia coli xx [8]
Escherichia spp.xx [8]
Actinomycetota spp.xx [10]
"Cyanobacteria" spp.x [10]
Chloroflexota spp.x [10]
Aquificota spp.x [10]
Verrucomicrobiota spp.x [10]
Vibrio spp.x [10]
Burkholderia spp.x [10]
Beijerinckia spp.x [10]

In a healthy placental microbiome, the diversity of the species and genera is extensive. [1] A change in the composition of the microbiota in the placenta is associated with excess gestational weight gain, and pre-term birth. [10] The placental microbiota varies between low birth weight infants and those infants with normal birth weights. [13] While bacteria are often found in the amniotic fluid of failed pregnancies, they are also found in particulate matter that is found in about 1% of healthy pregnancies. [9]

In non-human animals, part of the microbiome is passed onto offspring even before the offspring are born. Bacteriologists assume that the same probably holds true for humans. [9]

Research

The fact that germ free animals can be routinely generated by sterile cesarean section provides strong experimental evidence for the sterile womb hypothesis.

Future research may find that the microbiota of the female reproductive tract may be related to pregnancy, conception, and birth. Animal studies have been used to investigate the relationship between oral microbiota and the placental microbiota. Mice inoculated with species of oral bacteria demonstrated placental colonization soon afterwards. [14]

History

Investigations into reproductive-associated microbiomes began around 1885 by Theodor Escherich. He wrote that meconium from the newborn was free of bacteria. This was interpreted as the uterine environment being sterile. Other investigations used sterile diapers for meconium collection. No bacteria were able to be cultured from the samples. Bacteria were detected and were directly proportional to the time between birth and the passage of meconium. A 1927 study demonstrated the presence of bacteria in the amniotic fluid of those that were in labor for longer than six hours. [15]

See also

Related Research Articles

<span class="mw-page-title-main">Endometrium</span> Inner mucous membrane of the mammalian uterus

The endometrium is the inner epithelial layer, along with its mucous membrane, of the mammalian uterus. It has a basal layer and a functional layer: the basal layer contains stem cells which regenerate the functional layer. The functional layer thickens and then is shed during menstruation in humans and some other mammals, including other apes, Old World monkeys, some species of bat, the elephant shrew and the Cairo spiny mouse. In most other mammals, the endometrium is reabsorbed in the estrous cycle. During pregnancy, the glands and blood vessels in the endometrium further increase in size and number. Vascular spaces fuse and become interconnected, forming the placenta, which supplies oxygen and nutrition to the embryo and fetus. The speculated presence of an endometrial microbiota has been argued against.

<span class="mw-page-title-main">Meconium</span> Earliest feces of a mammalian infant

Meconium is the earliest stool of a mammalian infant resulting from defecation. Unlike later feces, meconium is composed of materials ingested during the time the infant spends in the uterus: intestinal epithelial cells, lanugo, mucus, amniotic fluid, bile, and water. Meconium, unlike later feces, is viscous and sticky like tar – its color usually being a very dark olive green and it is almost odorless. When diluted in amniotic fluid, it may appear in various shades of green, brown, or yellow. It should be completely passed by the end of the first few days after birth, with the stools progressing toward yellow.

<span class="mw-page-title-main">Placenta</span> Organ that connects the fetus to the uterine wall

The placenta is a temporary embryonic and later fetal organ that begins developing from the blastocyst shortly after implantation. It plays critical roles in facilitating nutrient, gas and waste exchange between the physically separate maternal and fetal circulations, and is an important endocrine organ, producing hormones that regulate both maternal and fetal physiology during pregnancy. The placenta connects to the fetus via the umbilical cord, and on the opposite aspect to the maternal uterus in a species-dependent manner. In humans, a thin layer of maternal decidual (endometrial) tissue comes away with the placenta when it is expelled from the uterus following birth. Placentas are a defining characteristic of placental mammals, but are also found in marsupials and some non-mammals with varying levels of development.

<span class="mw-page-title-main">Preterm birth</span> Birth at less than a specified gestational age

Preterm birth, also known as premature birth, is the birth of a baby at fewer than 37 weeks gestational age, as opposed to full-term delivery at approximately 40 weeks. Extreme preterm is less than 28 weeks, very early preterm birth is between 28 and 32 weeks, early preterm birth occurs between 32 and 34 weeks, late preterm birth is between 34 and 36 weeks' gestation. These babies are also known as premature babies or colloquially preemies or premmies. Symptoms of preterm labor include uterine contractions which occur more often than every ten minutes and/or the leaking of fluid from the vagina before 37 weeks. Premature infants are at greater risk for cerebral palsy, delays in development, hearing problems and problems with their vision. The earlier a baby is born, the greater these risks will be.

<span class="mw-page-title-main">Complications of pregnancy</span> Medical condition

Complications of pregnancy are health problems that are related to, or arise during pregnancy. Complications that occur primarily during childbirth are termed obstetric labor complications, and problems that occur primarily after childbirth are termed puerperal disorders. While some complications improve or are fully resolved after pregnancy, some may lead to lasting effects, morbidity, or in the most severe cases, maternal or fetal mortality.

Postterm pregnancy is when a woman has not yet delivered her baby after 42 weeks of gestation, two weeks beyond the typical 40-week duration of pregnancy. Postmature births carry risks for both the mother and the baby, including fetal malnutrition, meconium aspiration syndrome, and stillbirths. After the 42nd week of gestation, the placenta, which supplies the baby with nutrients and oxygen from the mother, starts aging and will eventually fail. Postterm pregnancy is a reason to induce labor.

Fusobacterium nucleatum is a Gram-negative, anaerobic bacterium, commensal to the human oral cavity, that plays a role in periodontal disease. This organism is commonly recovered from different monocultured microbial and mixed infections in humans and animals. In health and disease, it is a key component of periodontal plaque due to its abundance and its ability to coaggregate with other bacteria species in the oral cavity.

<span class="mw-page-title-main">Vaginal flora</span> Microorganisms present in the vagina

Vaginal flora, vaginal microbiota or vaginal microbiome are the microorganisms that colonize the vagina. They were discovered by the German gynecologist Albert Döderlein in 1892 and are part of the overall human flora. The amount and type of bacteria present have significant implications for an individual's overall health. The primary colonizing bacteria of a healthy individual are of the genus Lactobacillus, such as L. crispatus, and the lactic acid they produce is thought to protect against infection by pathogenic species.

<span class="mw-page-title-main">Velamentous cord insertion</span> Velamentous placenta

Velamentous cord insertion is a complication of pregnancy where the umbilical cord is inserted in the fetal membranes. It is a major cause of antepartum hemorrhage that leads to loss of fetal blood and associated with high perinatal mortality. In normal pregnancies, the umbilical cord inserts into the middle of the placental mass and is completely encased by the amniotic sac. The vessels are hence normally protected by Wharton's jelly, which prevents rupture during pregnancy and labor. In velamentous cord insertion, the vessels of the umbilical cord are improperly inserted in the chorioamniotic membrane, and hence the vessels traverse between the amnion and the chorion towards the placenta. Without Wharton's jelly protecting the vessels, the exposed vessels are susceptible to compression and rupture.

A cervical mucus plug (operculum) is a plug that fills and seals the cervical canal during pregnancy. It is formed by a small amount of cervical mucus that condenses to form a cervical mucus plug during pregnancy.

<span class="mw-page-title-main">Fetal membranes</span> Amnion and chorion which surround and protect a developing fetus

The fetal membranes are the four extraembryonic membranes, associated with the developing embryo, and fetus in humans and other mammals. They are the amnion, chorion, allantois, and yolk sac. The amnion and the chorion are the chorioamniotic membranes that make up the amniotic sac which surrounds and protects the embryo. The fetal membranes are four of six accessory organs developed by the conceptus that are not part of the embryo itself, the other two are the placenta, and the umbilical cord.

<span class="mw-page-title-main">High-risk pregnancy</span> Medical condition

A high-risk pregnancy is a pregnancy where the mother or the fetus has an increased risk of adverse outcomes compared to uncomplicated pregnancies. No concrete guidelines currently exist for distinguishing “high-risk” pregnancies from “low-risk” pregnancies; however, there are certain studied conditions that have been shown to put the mother or fetus at a higher risk of poor outcomes. These conditions can be classified into three main categories: health problems in the mother that occur before she becomes pregnant, health problems in the mother that occur during pregnancy, and certain health conditions with the fetus.

The initial acquisition of microbiota is the formation of an organism's microbiota immediately before and after birth. The microbiota are all the microorganisms including bacteria, archaea and fungi that colonize the organism. The microbiome is another term for microbiota or can refer to the collected genomes.

The vaginal flora in pregnancy, or vaginal microbiota in pregnancy, is different from the vaginal flora before sexual maturity, during reproductive years, and after menopause. A description of the vaginal flora of pregnant women who are immunocompromised is not covered in this article. The composition of the vaginal flora significantly differs in pregnancy. Bacteria or viruses that are infectious most often have no symptoms.

<span class="mw-page-title-main">Neonatal infection</span> Human disease

Neonatal infections are infections of the neonate (newborn) acquired during prenatal development or within the first four weeks of life. Neonatal infections may be contracted by mother to child transmission, in the birth canal during childbirth, or after birth. Neonatal infections may present soon after delivery, or take several weeks to show symptoms. Some neonatal infections such as HIV, hepatitis B, and malaria do not become apparent until much later. Signs and symptoms of infection may include respiratory distress, temperature instability, irritability, poor feeding, failure to thrive, persistent crying and skin rashes.

The Human Microbiome Project (HMP), completed in 2012, laid the foundation for further investigation into the role the microbiome plays in overall health and disease. One area of particular interest is the role which delivery mode plays in the development of the infant/neonate microbiome and what potential implications this may have long term. It has been found that infants born via vaginal delivery have microbiomes closely mirroring that of the mother's vaginal microbiome, whereas those born via cesarean section tend to resemble that of the mother's skin. One notable study from 2010 illustrated an abundance of Lactobacillus and other typical vaginal genera in stool samples of infants born via vaginal delivery and an abundance of Staphylococcus and Corynebacterium, commonly found on the skin surfaces, in stool samples of infants born via cesarean section. From these discoveries came the concept of vaginal seeding, also known as microbirthing, which is a procedure whereby vaginal fluids are applied to a new-born child delivered by caesarean section. The idea of vaginal seeding was explored in 2015 after Maria Gloria Dominguez-Bello discovered that birth by caesarean section significantly altered the newborn child's microbiome compared to that of vaginal birth. The purpose of the technique is to recreate the natural transfer of bacteria that the baby gets during a vaginal birth. It involves placing swabs in the mother's vagina, and then wiping them onto the baby's face, mouth, eyes and skin. Due to the long-drawn nature of studying the impact of vaginal seeding, there are a limited number of studies available that support or refute its use. The evidence suggests that applying microbes from the mother's vaginal canal to the baby after cesarean section may aid in the partial restoration of the infant's natural gut microbiome with an increased likelihood of pathogenic infection to the child via vertical transmission.

<span class="mw-page-title-main">Uterine microbiome</span>

The uterine microbiome refers to the community of commensal, nonpathogenic microorganisms—including bacteria, viruses, and yeasts/fungi—present in a healthy uterus, as well as in the amniotic fluid and endometrium. These microorganisms coexist in a specific environment within the uterus, playing a vital role in maintaining reproductive health. In the past, the uterus was believed to be a sterile environment, free of any microbial life. Recent advancements in microbiological research, particularly the improvement of 16S rRNA gene sequencing techniques, have challenged this long-held belief. These advanced techniques have made it possible to detect bacteria and other microorganisms present in very low numbers. Using this procedure that allows the detection of bacteria that cannot be cultured outside the body, studies of microbiota present in the uterus are expected to increase.

<span class="mw-page-title-main">Salivary microbiome</span> Biological contents of human saliva

The salivary microbiome consists of the nonpathogenic, commensal bacteria present in the healthy human salivary glands. It differs from the oral microbiome which is located in the oral cavity. Oral microorganisms tend to adhere to teeth. The oral microbiome possesses its own characteristic microorganisms found there. Resident microbes of the mouth adhere to the teeth and gums. "[T]here may be important interactions between the saliva microbiome and other microbiomes in the human body, in particular, that of the intestinal tract."


Moses Obimbo Madadi, is a Kenyan clinician - scientist, researcher, and educator. He is Professor and Chairman of the Department of Human Anatomy and Medical Physiology at the University of Nairobi; and serves as an obstetrician and gynaecologist at The Kenyatta National Hospital. Obimbo is also the Honorary Secretary of The Kenya Obstetrical and Gynaecological Society.

References

  1. 1 2 3 4 Fox C, Eichelberger K (2015). "Maternal microbiome and pregnancy outcomes". Fertility and Sterility. 104 (6): 1358–63. doi: 10.1016/j.fertnstert.2015.09.037 . PMID   26493119.
  2. Schwiertz, Andreas; Rusch, Volker (2016). "A Short Definition of Terms". In Schwiertz, Andreas (ed.). Microbiota of the Human Body. Advances in Experimental Medicine and Biology. pp. 1–3. ISBN   978-3-319-31248-4.
  3. 1 2 Perez-Muñoz, Maria Elisa; Arrieta, Marie-Claire; Ramer-Tait, Amanda E.; Walter, Jens (2017-04-28). "A critical assessment of the "sterile womb" and "in utero colonization" hypotheses: implications for research on the pioneer infant microbiome". Microbiome. 5 (1): 48. doi: 10.1186/s40168-017-0268-4 . ISSN   2049-2618. PMC   5410102 . PMID   28454555.
  4. Kliman, Harvey J. (2014-09-17). "Comment on "The placenta harbors a unique microbiome"". Science Translational Medicine. 6 (254): 254le4. doi:10.1126/scitranslmed.3009864. ISSN   1946-6234. PMID   25232175. S2CID   206685421.
  5. Lauder, Abigail P.; Roche, Aoife M.; Sherrill-Mix, Scott; Bailey, Aubrey; Laughlin, Alice L.; Bittinger, Kyle; Leite, Rita; Elovitz, Michal A.; Parry, Samuel (2016-06-23). "Comparison of placenta samples with contamination controls does not provide evidence for a distinct placenta microbiota". Microbiome. 4 (1): 29. doi: 10.1186/s40168-016-0172-3 . ISSN   2049-2618. PMC   4917942 . PMID   27338728.
  6. Yarbrough VL, Winkle S, Herbst-Kralovetz MM (2015). "Antimicrobial peptides in the female reproductive tract: a critical component of the mucosal immune barrier with physiological and clinical implications". Human Reproduction Update. 21 (3): 353–77. doi: 10.1093/humupd/dmu065 . PMID   25547201.
  7. Mor G, Kwon JY (2015). "Trophoblast-microbiome interaction: a new paradigm on immune regulation". American Journal of Obstetrics and Gynecology. 213 (4 Suppl): S131–7. doi: 10.1016/j.ajog.2015.06.039 . PMC   6800181 . PMID   26428492.
  8. 1 2 3 Todar, K. "Pathogenic E. coli". Online Textbook of Bacteriology. University of Wisconsin–Madison Department of Bacteriology. Retrieved 2007-11-30.
  9. 1 2 3 4 5 6 Wassenaar TM, Panigrahi P (2014). "Is a foetus developing in a sterile environment?". Letters in Applied Microbiology. 59 (6): 572–9. doi:10.1111/lam.12334. PMID   25273890. S2CID   206169539.
  10. 1 2 3 4 5 6 7 8 9 10 11 12 13 Antony KM, Ma J, Mitchell KB, Racusin DA, Versalovic J, Aagaard K (2015). "The preterm placental microbiome varies in association with excess maternal gestational weight gain". American Journal of Obstetrics and Gynecology. 212 (5): 653.e1–16. doi:10.1016/j.ajog.2014.12.041. PMC   4892181 . PMID   25557210.
  11. Prince AL, Antony KM, Chu DM, Aagaard KM (2014). "The microbiome, parturition, and timing of birth: more questions than answers". Journal of Reproductive Immunology. 104–105: 12–9. doi:10.1016/j.jri.2014.03.006. PMC   4157949 . PMID   24793619.
  12. Hitti J, Hillier SL, Agnew KJ, Krohn MA, Reisner DP, Eschenbach DA (2001). "Vaginal indicators of amniotic fluid infection in preterm labor". Obstetrics and Gynecology. 97 (2): 211–9. doi:10.1016/s0029-7844(00)01146-7. PMID   11165584. S2CID   345396.
  13. Zheng J, Xiao X, Zhang Q, Mao L, Yu M, Xu J (2015). "The Placental Microbiome Varies in Association with Low Birth Weight in Full-Term Neonates". Nutrients. 7 (8): 6924–37. doi: 10.3390/nu7085315 . PMC   4555154 . PMID   26287241.
  14. The Human Microbiota : How Microbial Communities Affect Health and Disease. Fredricks, David N. Hoboken, New Jersey: Wiley-Blackwell. 2013. pp. 156, 169. ISBN   9780470479896. OCLC   794922809.{{cite book}}: CS1 maint: others (link)
  15. Perez-Muñoz ME, Arrieta MC, Ramer-Tait AE, Walter J (2017). "A critical assessment of the "sterile womb" and "in utero colonization" hypotheses: implications for research on the pioneer infant microbiome". Microbiome. 5 (1): 48. doi: 10.1186/s40168-017-0268-4 . PMC   5410102 . PMID   28454555.