Salivary microbiome

Last updated

The salivary microbiome consists of the nonpathogenic, commensal bacteria present in the healthy human salivary glands. It differs from the oral microbiome which is located in the oral cavity. Oral microorganisms tend to adhere to teeth. [1] The oral microbiome possesses its own characteristic microorganisms found there. Resident microbes of the mouth adhere to the teeth and gums. "[T]here may be important interactions between the saliva microbiome and other microbiomes in the human body, in particular, that of the intestinal tract." [2]

Contents

Microorganisms reside in saliva 1985Nian Gao Xiu Min She Ying Zuo Pin -Tai Wan Er Tong .jpg
Microorganisms reside in saliva

Characteristics

Unlike the uterine, placental and vaginal microbiomes, the types of organisms in the salivary microbiota remain relatively constant. There is no difference between populations of microbes based upon gender, age, diet, obesity, alcohol intake, race, or tobacco use. [3] The salivary microbiome characteristically remains stable over a lifetime. [4] One study suggests sharing an environment (e.g., living together) may influence the salivary microbiome more than genetic components. [4] Porphyromonas, Solobacterium, Haemophilus, Corynebacterium, Cellulosimicrobium, Streptococcus and Campylobacter are some of the genera found in the saliva. [5]

While the salivary microbiome shows stability, the broader oral microbiome can be influenced by various factors. A number of elements, including diet, dental hygiene, age, underlying medical conditions, and the use of antibiotics, as well as lifestyle choices such as smoking and alcohol consumption, and physiological changes such as pregnancy, the menstrual cycle, and menopause, can exert an influence on the composition of the oral microbiome. [6] [7] [8]

Genetic markers and diagnostic testing

"There is high diversity in the salivary microbiome within and between individuals, but little geographic structure. Overall, ~13.5% of the total variance in the composition of genera is due to differences among individuals, which is remarkably similar to the fraction of the total variance in neutral genetic markers that can be attributed to differences among human populations." [2]

"[E]nvironmental variables revealed a significant association between the genetic distances among locations and the distance of each location from the equator. Further characterization of the enormous diversity revealed here in the human salivary microbiome will aid in elucidating the role it plays in human health and disease, and in the identification of potentially informative species for studies of human population history." [2]

Sixty new genera have been identified from the salivary glands. A total of 101 different genera were identified in the salivary glands. Out of these, 39 genera are not found in the oral microbiome. It is not known whether the resident species remain constant or change. [2]

Though the association between the salivary microbiome is similar to that of the oral microbiome, there also exists an association the salivary microbiome and the gut microbiome. Saliva sampling may be a non-invasive way to detect changes in the gut microbiome and changes in systemic disease. The association between the salivary microbiome those with Polycistic Ovarian Syndrome has been characterized: "saliva microbiome profiles correlate with those in the stool, despite the fact that the bacterial communities in the two locations differ greatly. Therefore, saliva may be a useful alternative to stool as an indicator of bacterial dysbiosis in systemic disease." [9]

The sugar concentration in salivary secretions can vary. Blood sugar levels are reflected in salivary gland secretions. High salivary glucose (HSG) levels are a glucose concentration ≥ 1.0 mg/d, n = 175) and those with low salivary glucose (LSG) levels are < 0.1 mg/dL n = 2,537). Salivary gland secretions containing high levels of sugar change the oral microbiome and contributes to an environment that is conductive to the formation of dental caries and gingivitis. [10]

Salivary glands

Salivary glands: 1.parotid, 2.submandibular, 3.sublingual. Illu quiz hn 02.jpg
Salivary glands: 1.parotid, 2.submandibular, 3.sublingual.

Organisms of the salivary microbiome reside in the three major salivary glands: parotid, submandibular, and sublingual. These glands secrete electrolytes, proteins, genetic material, polysaccharides, and other molecules. Most of these substances enter the salivary gland acinus and duct system from surrounding capillaries via the intervening tissue fluid, although some substances are produced within the glands themselves. The level of each salivary component varies considerably depending on the health status of the individual and the presence of pathogenic and commensal organisms.

Related Research Articles

<i>Lactobacillus</i> Genus of bacteria

Lactobacillus is a genus of gram-positive, aerotolerant anaerobes or microaerophilic, rod-shaped, non-spore-forming bacteria. Until 2020, the genus Lactobacillus comprised over 260 phylogenetically, ecologically, and metabolically diverse species; a taxonomic revision of the genus assigned lactobacilli to 25 genera.

<span class="mw-page-title-main">Saliva</span> Bodily fluid secreted by salivary glands

Saliva is an extracellular fluid produced and secreted by salivary glands in the mouth. In humans, saliva is around 99% water, plus electrolytes, mucus, white blood cells, epithelial cells, enzymes, and antimicrobial agents.

<span class="mw-page-title-main">Human microbiome</span> Microorganisms in or on human skin and biofluids

The human microbiome is the aggregate of all microbiota that reside on or within human tissues and biofluids along with the corresponding anatomical sites in which they reside, including the gastrointestinal tract, skin, mammary glands, seminal fluid, uterus, ovarian follicles, lung, saliva, oral mucosa, conjunctiva, and the biliary tract. Types of human microbiota include bacteria, archaea, fungi, protists, and viruses. Though micro-animals can also live on the human body, they are typically excluded from this definition. In the context of genomics, the term human microbiome is sometimes used to refer to the collective genomes of resident microorganisms; however, the term human metagenome has the same meaning.

<span class="mw-page-title-main">Salivary gland</span> Exocrine glands that produce saliva through a system of ducts

The salivary glands in many vertebrates including mammals are exocrine glands that produce saliva through a system of ducts. Humans have three paired major salivary glands, as well as hundreds of minor salivary glands. Salivary glands can be classified as serous, mucous, or seromucous (mixed).

<span class="mw-page-title-main">Paneth cell</span> Anti-microbial epithelial cell of the small intestine

Paneth cells are cells in the small intestine epithelium, alongside goblet cells, enterocytes, and enteroendocrine cells. Some can also be found in the cecum and appendix. They are located below the intestinal stem cells in the intestinal glands and the large eosinophilic refractile granules that occupy most of their cytoplasm.

<span class="mw-page-title-main">Skin flora</span> Microbiota that reside on the skin

Skin flora, also called skin microbiota, refers to microbiota that reside on the skin, typically human skin.

<span class="mw-page-title-main">Vaginal flora</span> Microorganisms present in the vagina

Vaginal flora, vaginal microbiota or vaginal microbiome are the microorganisms that colonize the vagina. They were discovered by the German gynecologist Albert Döderlein in 1892 and are part of the overall human flora. The amount and type of bacteria present have significant implications for an individual's overall health. The primary colonizing bacteria of a healthy individual are of the genus Lactobacillus, such as L. crispatus, and the lactic acid they produce is thought to protect against infection by pathogenic species.

<span class="mw-page-title-main">Oral microbiology</span>

Oral microbiology is the study of the microorganisms (microbiota) of the oral cavity and their interactions between oral microorganisms or with the host. The environment present in the human mouth is suited to the growth of characteristic microorganisms found there. It provides a source of water and nutrients, as well as a moderate temperature. Resident microbes of the mouth adhere to the teeth and gums to resist mechanical flushing from the mouth to stomach where acid-sensitive microbes are destroyed by hydrochloric acid.

<span class="mw-page-title-main">Free fatty acid receptor 2</span> Protein-coding gene in the species Homo sapiens

Free fatty acid receptor 2 (FFAR2), also known as G-protein coupled receptor 43 (GPR43), is a rhodopsin-like G-protein coupled receptor (GPCR) encoded by the FFAR2 gene. In humans, the FFAR2 gene is located on the long arm of chromosome 19 at position 13.12 (19q13.12).

Oral ecology is the microbial ecology of the microorganisms found in mouths. Oral ecology, like all forms of ecology, involves the study of the living things found in oral cavities as well as their interactions with each other and with their environment. Oral ecology is frequently investigated from the perspective of oral disease prevention, often focusing on conditions such as dental caries, candidiasis ("thrush"), gingivitis, periodontal disease, and others. However, many of the interactions between the microbiota and oral environment protect from disease and support a healthy oral cavity. Interactions between microbes and their environment can result in the stabilization or destabilization of the oral microbiome, with destabilization believed to result in disease states. Destabilization of the microbiome can be influenced by several factors, including diet changes, drugs or immune system disorders.

Biotene is an over-the-counter dental hygiene product currently marketed by Haleon. It comes in a number of forms, including toothpaste, mouthwash, and gel.

<span class="mw-page-title-main">Salivary gland disease</span> Medical condition

Salivary gland diseases (SGDs) are multiple and varied in cause. There are three paired major salivary glands in humans: the parotid glands, the submandibular glands, and the sublingual glands. There are also about 800–1,000 minor salivary glands in the mucosa of the mouth. The parotid glands are in front of the ears, one on side, and secrete mostly serous saliva, via the parotid ducts, into the mouth, usually opening roughly opposite the second upper molars. The submandibular gland is medial to the angle of the mandible, and it drains its mixture of serous and mucous saliva via the submandibular duct into the mouth, usually opening in a punctum in the floor of mouth. The sublingual gland is below the tongue, on the floor of the mouth; it drains its mostly mucous saliva into the mouth via about 8–20 ducts, which open along the plica sublingualis, a fold of tissue under the tongue.

<span class="mw-page-title-main">Microbiome</span> Microbial community assemblage and activity

A microbiome is the community of microorganisms that can usually be found living together in any given habitat. It was defined more precisely in 1988 by Whipps et al. as "a characteristic microbial community occupying a reasonably well-defined habitat which has distinct physio-chemical properties. The term thus not only refers to the microorganisms involved but also encompasses their theatre of activity". In 2020, an international panel of experts published the outcome of their discussions on the definition of the microbiome. They proposed a definition of the microbiome based on a revival of the "compact, clear, and comprehensive description of the term" as originally provided by Whipps et al., but supplemented with two explanatory paragraphs, the first pronouncing the dynamic character of the microbiome, and the second clearly separating the term microbiota from the term microbiome.

<span class="mw-page-title-main">Uterine microbiome</span>

The uterine microbiome refers to the community of commensal, nonpathogenic microorganisms—including bacteria, viruses, and yeasts/fungi—present in a healthy uterus, as well as in the amniotic fluid and endometrium. These microorganisms coexist in a specific environment within the uterus, playing a vital role in maintaining reproductive health. In the past, the uterus was believed to be a sterile environment, free of any microbial life. Recent advancements in microbiological research, particularly the improvement of 16S rRNA gene sequencing techniques, have challenged this long-held belief. These advanced techniques have made it possible to detect bacteria and other microorganisms present in very low numbers. Using this procedure that allows the detection of bacteria that cannot be cultured outside the body, studies of microbiota present in the uterus are expected to increase.

<span class="mw-page-title-main">Pharmacomicrobiomics</span>

Pharmacomicrobiomics, proposed by Prof. Marco Candela for the ERC-2009-StG project call, and publicly coined for the first time in 2010 by Rizkallah et al., is defined as the effect of microbiome variations on drug disposition, action, and toxicity. Pharmacomicrobiomics is concerned with the interaction between xenobiotics, or foreign compounds, and the gut microbiome. It is estimated that over 100 trillion prokaryotes representing more than 1000 species reside in the gut. Within the gut, microbes help modulate developmental, immunological and nutrition host functions. The aggregate genome of microbes extends the metabolic capabilities of humans, allowing them to capture nutrients from diverse sources. Namely, through the secretion of enzymes that assist in the metabolism of chemicals foreign to the body, modification of liver and intestinal enzymes, and modulation of the expression of human metabolic genes, microbes can significantly impact the ingestion of xenobiotics.

Porphyromonas pasteri is a Gram-negative, obligately anaerobic, non-spore-forming and non-motile bacterium from the genus Porphyromonas which has been isolated from the human saliva. Porphyromonas pasteri is associated with periodontitis, a disease that can lead to tooth loss, and has also been linked to other systemic diseases such as cardiovascular disease, rheumatoid arthritis, and certain cancers.

<span class="mw-page-title-main">Human milk microbiome</span> Community of microorganisms in human milk

The human milk microbiota, also known as human milk probiotics (HMP), encompasses the microbiota–the community of microorganisms–present within the human mammary glands and breast milk. Contrary to the traditional belief that human breast milk is sterile, advancements in both microbial culture and culture-independent methods have confirmed that human milk harbors diverse communities of bacteria. These communities are distinct in composition from other microbial populations found within the human body which constitute the human microbiome.

TM7x, also known as Nanosynbacter lyticus type strain TM7x HMT 952. is a phylotype of one of the most enigmatic phyla, Candidatus Saccharibacteria, formerly candidate phylum TM7. It is the only member of the candidate phylum that has been cultivated successfully from the human oral cavity, and stably maintained in vitro. and serves as a crucial paradigm. of the newly described Candidate Phyla Radiation (CPR). The cultivated oral taxon is designated as Saccharibacteria oral taxon TM7x. TM7x has a unique lifestyle in comparison to other bacteria that are associated with humans. It is an obligate epibiont parasite, or an "epiparasite", growing on the surface of its host bacterial species Actinomyces odontolyticus subspecies actinosynbacter strain XH001, which is referred to as the "basibiont". Actinomyces species are one of the early microbial colonizers in the oral cavity. Together, they exhibit parasitic epibiont symbiosis.

References

  1. Schwiertz A (2016). Microbiota of the human body : implications in health and disease. Switzerland: Springer. p. 45. ISBN   978-3-319-31248-4.
  2. 1 2 3 4 Nasidze I, Li J, Quinque D, Tang K, Stoneking M (April 2009). "Global diversity in the human salivary microbiome". Genome Research. 19 (4): 636–643. doi:10.1101/gr.084616.108. PMC   2665782 . PMID   19251737.
  3. Lindheim L, Bashir M, Münzker J, Trummer C, Zachhuber V, Pieber TR, et al. (25 August 2016). "The Salivary Microbiome in Polycystic Ovary Syndrome (PCOS) and Its Association with Disease-Related Parameters: A Pilot Study". Frontiers in Microbiology. 7: 1270. doi: 10.3389/fmicb.2016.01270 . PMC   4996828 . PMID   27610099.
  4. 1 2 Shaw L, Ribeiro AL, Levine AP, Pontikos N, Balloux F, Segal AW, et al. (September 2017). Fraser CM (ed.). "The Human Salivary Microbiome Is Shaped by Shared Environment Rather than Genetics: Evidence from a Large Family of Closely Related Individuals". mBio. 8 (5): e01237–17. doi:10.1128/mBio.01237-17. PMC   5596345 . PMID   28900019.
  5. Wang K, Lu W, Tu Q, Ge Y, He J, Zhou Y, et al. (March 2016). "Preliminary analysis of salivary microbiome and their potential roles in oral lichen planus". Scientific Reports. 6 (1): 22943. Bibcode:2016NatSR...622943W. doi:10.1038/srep22943. PMC   4785528 . PMID   26961389.
  6. Bryan NS, Burleigh MC, Easton C (August 2022). "The oral microbiome, nitric oxide and exercise performance". Nitric Oxide. 125–126: 23–30. doi: 10.1016/j.niox.2022.05.004 . PMID   35636654.
  7. Bostanghadiri N, Kouhzad M, Taki E, Elahi Z, Khoshbayan A, Navidifar T, et al. (2024-08-20). "Oral microbiota and metabolites: key players in oral health and disorder, and microbiota-based therapies". Frontiers in Microbiology. 15: 1431785. doi: 10.3389/fmicb.2024.1431785 . PMC   11368800 . PMID   39228377.
  8. Sedghi L, DiMassa V, Harrington A, Lynch SV, Kapila YL (October 2021). "The oral microbiome: Role of key organisms and complex networks in oral health and disease". Periodontology 2000. 87 (1): 107–131. doi:10.1111/prd.12393. PMC   8457218 . PMID   34463991.
  9. Lindheim L, Bashir M, Münzker J, Trummer C, Zachhuber V, Pieber TR, et al. (1 January 2016). "The Salivary Microbiome in Polycystic Ovary Syndrome (PCOS) and Its Association with Disease-Related Parameters: A Pilot Study". Frontiers in Microbiology. 7: 1270. doi: 10.3389/fmicb.2016.01270 . PMC   4996828 . PMID   27610099.
  10. Goodson JM, Hartman ML, Shi P, Hasturk H, Yaskell T, Vargas J, et al. (2017). "The salivary microbiome is altered in the presence of a high salivary glucose concentration". PLOS ONE. 12 (3): e0170437. Bibcode:2017PLoSO..1270437G. doi: 10.1371/journal.pone.0170437 . PMC   5331956 . PMID   28249034.

See also