Salivary microbiome

Last updated

The salivary microbiome consists of the nonpathogenic, commensal bacteria present in the healthy human salivary glands. It differs from the oral microbiome which is located in the oral cavity. Oral microorganisms tend to adhere to teeth. [1] The oral microbiome possesses its own characteristic microorganisms found there. Resident microbes of the mouth adhere to the teeth and gums. "[T]here may be important interactions between the saliva microbiome and other microbiomes in the human body, in particular, that of the intestinal tract." [2]

Contents

Microorganisms reside in saliva 1985Nian Gao Xiu Min She Ying Zuo Pin -Tai Wan Er Tong .jpg
Microorganisms reside in saliva

Characteristics

Unlike the uterine, placental and vaginal microbiomes, the types of organisms in the salivary microbiota remain relatively constant. There is no difference between populations of microbes based upon gender, age, diet, obesity, alcohol intake, race, or tobacco use. [3] The salivary microbiome characteristically remains stable over a lifetime. [4] One study suggests sharing an environment (e.g., living together) may influence the salivary microbiome more than genetic components. [5] Porphyromonas, Solobacterium, Haemophilus, Corynebacterium, Cellulosimicrobium, Streptococcus and Campylobacter are some of the genera found in the saliva. [6]

Genetic markers and diagnostic testing

"There is high diversity in the salivary microbiome within and between individuals, but little geographic structure. Overall, ~13.5% of the total variance in the composition of genera is due to differences among individuals, which is remarkably similar to the fraction of the total variance in neutral genetic markers that can be attributed to differences among human populations." [2]

"[E]nvironmental variables revealed a significant association between the genetic distances among locations and the distance of each location from the equator. Further characterization of the enormous diversity revealed here in the human salivary microbiome will aid in elucidating the role it plays in human health and disease, and in the identification of potentially informative species for studies of human population history." [2]

Sixty new genera have been identified from the salivary glands. A total of 101 different genera were identified in the salivary glands. Out of these, 39 genera are not found in the oral microbiome. It is not known whether the resident species remain constant or change. [2]

Though the association between the salivary microbiome is similar to that of the oral microbiome, there also exists an association the salivary microbiome and the gut microbiome. Saliva sampling may be a non-invasive way to detect changes in the gut microbiome and changes in systemic disease. The association between the salivary microbiome those with Polycistic Ovarian Syndrome has been characterized: "saliva microbiome profiles correlate with those in the stool, despite the fact that the bacterial communities in the two locations differ greatly. Therefore, saliva may be a useful alternative to stool as an indicator of bacterial dysbiosis in systemic disease." [7]

The sugar concentration in salivary secretions can vary. Blood sugar levels are reflected in salivary gland secretions. High salivary glucose (HSG) levels are a glucose concentration ≥ 1.0 mg/d, n = 175) and those with low salivary glucose (LSG) levels are < 0.1 mg/dL n = 2,537). Salivary gland secretions containing high levels of sugar change the oral microbiome and contributes to an environment that is conductive to the formation of dental caries and gingivitis. [8]

Salivary glands

Salivary glands: 1.parotid, 2.submandibular, 3.sublingual. Illu quiz hn 02.jpg
Salivary glands: 1.parotid, 2.submandibular, 3.sublingual.

Organisms of the salivary microbiome reside in the three major salivary glands: parotid, submandibular, and sublingual. These glands secrete electrolytes, proteins, genetic material, polysaccharides, and other molecules. Most of these substances enter the salivary gland acinus and duct system from surrounding capillaries via the intervening tissue fluid, although some substances are produced within the glands themselves. The level of each salivary component varies considerably depending on the health status of the individual and the presence of pathogenic and commensal organisms.

Related Research Articles

<span class="mw-page-title-main">Saliva</span> Bodily fluid secreted by salivary glands

Saliva is an extracellular fluid produced and secreted by salivary glands in the mouth. In humans, saliva is around 99% water, plus electrolytes, mucus, white blood cells, epithelial cells, enzymes, antimicrobial agents.

<span class="mw-page-title-main">Human microbiome</span> Microorganisms in or on human skin and biofluids

The human microbiome is the aggregate of all microbiota that reside on or within human tissues and biofluids along with the corresponding anatomical sites in which they reside, including the gastrointestinal tract, skin, mammary glands, seminal fluid, uterus, ovarian follicles, lung, saliva, oral mucosa, conjunctiva, and the biliary tract. Types of human microbiota include bacteria, archaea, fungi, protists, and viruses. Though micro-animals can also live on the human body, they are typically excluded from this definition. In the context of genomics, the term human microbiome is sometimes used to refer to the collective genomes of resident microorganisms; however, the term human metagenome has the same meaning.

<span class="mw-page-title-main">Salivary gland</span> Exocrine glands that produce saliva through a system of ducts

The salivary glands in many vertebrates including mammals are exocrine glands that produce saliva through a system of ducts. Humans have three paired major salivary glands, as well as hundreds of minor salivary glands. Salivary glands can be classified as serous, mucous, or seromucous (mixed).

<span class="mw-page-title-main">Submandibular gland</span> Human salivary gland

The paired submandibular glands are major salivary glands located beneath the floor of the mouth. In adult humans, they each weigh about 15 grams and contribute some 60–67% of unstimulated saliva secretion; on stimulation their contribution decreases in proportion as parotid gland secretion rises to 50%. The average length of the normal adult human submandibular salivary gland is approximately 27 mm, while the average width is approximately 14.3 mm.

<span class="mw-page-title-main">Xerostomia</span> Medical condition

Xerostomia, also known as dry mouth, is dryness in the mouth, which may be associated with a change in the composition of saliva, or reduced salivary flow, or have no identifiable cause.

<span class="mw-page-title-main">Gut microbiota</span> Community of microorganisms in the gut

Gut microbiota, gut microbiome, or gut flora are the microorganisms, including bacteria, archaea, fungi, and viruses, that live in the digestive tracts of animals. The gastrointestinal metagenome is the aggregate of all the genomes of the gut microbiota. The gut is the main location of the human microbiome. The gut microbiota has broad impacts, including effects on colonization, resistance to pathogens, maintaining the intestinal epithelium, metabolizing dietary and pharmaceutical compounds, controlling immune function, and even behavior through the gut–brain axis.

<span class="mw-page-title-main">Paneth cell</span> Anti-microbial epithelial cell of the small intestine

Paneth cells are cells in the small intestine epithelium, alongside goblet cells, enterocytes, and enteroendocrine cells. Some can also be found in the cecum and appendix. They are located below the intestinal stem cells in the intestinal glands and the large eosinophilic refractile granules that occupy most of their cytoplasm.

Dysbiosis is characterized by a disruption to the microbiome resulting in an imbalance in the microbiota, changes in their functional composition and metabolic activities, or a shift in their local distribution. For example, a part of the human microbiota such as the skin flora, gut flora, or vaginal flora, can become deranged, with normally dominating species underrepresented and normally outcompeted or contained species increasing to fill the void. Similar to the human gut microbiome, diverse microbes colonize the plant rhizosphere, and dysbiosis in the rhizosphere, can negatively impact plant health. Dysbiosis is most commonly reported as a condition in the gastrointestinal tract or plant rhizosphere.

<span class="mw-page-title-main">Vaginal flora</span> Microorganisms present in the vagina

Vaginal flora, vaginal microbiota or vaginal microbiome are the microorganisms that colonize the vagina. They were discovered by the German gynecologist Albert Döderlein in 1892 and are part of the overall human flora. The amount and type of bacteria present have significant implications for an individual's overall health. The primary colonizing bacteria of a healthy individual are of the genus Lactobacillus, such as L. crispatus, and the lactic acid they produce is thought to protect against infection by pathogenic species.

<span class="mw-page-title-main">Oral microbiology</span>

Oral microbiology is the study of the microorganisms (microbiota) of the oral cavity and their interactions between oral microorganisms or with the host. The environment present in the human mouth is suited to the growth of characteristic microorganisms found there. It provides a source of water and nutrients, as well as a moderate temperature. Resident microbes of the mouth adhere to the teeth and gums to resist mechanical flushing from the mouth to stomach where acid-sensitive microbes are destroyed by hydrochloric acid.

<span class="mw-page-title-main">Histatin 3</span> Protein-coding gene in the species Homo sapiens

Histatin 3, also known as HTN3, is a protein which in humans is encoded by the HTN3 gene.

Oral ecology is the microbial ecology of the microorganisms found in mouths. Oral ecology, like all forms of ecology, involves the study of the living things found in oral cavities as well as their interactions with each other and with their environment. Oral ecology is frequently investigated from the perspective of oral disease prevention, often focusing on conditions such as dental caries, candidiasis ("thrush"), gingivitis, periodontal disease, and others. However, many of the interactions between the microbiota and oral environment protect from disease and support a healthy oral cavity. Interactions between microbes and their environment can result in the stabilization or destabilization of the oral microbiome, with destabilization believed to result in disease states. Destabilization of the microbiome can be influenced by several factors, including diet changes, drugs or immune system disorders.

Biotene is an over-the-counter dental hygiene product currently marketed GSK plc. It comes in a number of forms, including toothpaste, mouthwash and gel.

The lung microbiota is the pulmonary microbial community consisting of a complex variety of microorganisms found in the lower respiratory tract particularly on the mucous layer and the epithelial surfaces. These microorganisms include bacteria, fungi, viruses and bacteriophages. The bacterial part of the microbiota has been more closely studied. It consists of a core of nine genera: Prevotella, Sphingomonas, Pseudomonas, Acinetobacter, Fusobacterium, Megasphaera, Veillonella, Staphylococcus, and Streptococcus. They are aerobes as well as anaerobes and aerotolerant bacteria. The microbial communities are highly variable in particular individuals and compose of about 140 distinct families. The bronchial tree for instance contains a mean of 2000 bacterial genomes per cm2 surface. The harmful or potentially harmful bacteria are also detected routinely in respiratory specimens. The most significant are Moraxella catarrhalis, Haemophilus influenzae, and Streptococcus pneumoniae. They are known to cause respiratory disorders under particular conditions namely if the human immune system is impaired. The mechanism by which they persist in the lower airways in healthy individuals is unknown.

<span class="mw-page-title-main">Saliva testing</span>

Saliva testing or Salivaomics is a diagnostic technique that involves laboratory analysis of saliva to identify markers of endocrine, immunologic, inflammatory, infectious, and other types of conditions. Saliva is a useful biological fluid for assaying steroid hormones such as cortisol, genetic material like RNA, proteins such as enzymes and antibodies, and a variety of other substances, including natural metabolites, including saliva nitrite, a biomarker for nitric oxide status. Saliva testing is used to screen for or diagnose numerous conditions and disease states, including Cushing's disease, anovulation, HIV, cancer, parasites, hypogonadism, and allergies. Salivary testing has even been used by the U.S. government to assess circadian rhythm shifts in astronauts before flight and to evaluate hormonal profiles of soldiers undergoing military survival training.

<span class="mw-page-title-main">Salivary gland disease</span> Medical condition

Salivary gland diseases (SGDs) are multiple and varied in cause. There are three paired major salivary glands in humans: the parotid glands, the submandibular glands, and the sublingual glands. There are also about 800–1,000 minor salivary glands in the mucosa of the mouth. The parotid glands are in front of the ears, one on side, and secrete mostly serous saliva, via the parotid ducts, into the mouth, usually opening roughly opposite the second upper molars. The submandibular gland is medial to the angle of the mandible, and it drains its mixture of serous and mucous saliva via the submandibular duct into the mouth, usually opening in a punctum in the floor of mouth. The sublingual gland is below the tongue, on the floor of the mouth; it drains its mostly mucous saliva into the mouth via about 8–20 ducts, which open along the plica sublingualis, a fold of tissue under the tongue.

<span class="mw-page-title-main">Human digestive system</span> Digestive system in humans

The human digestive system consists of the gastrointestinal tract plus the accessory organs of digestion. Digestion involves the breakdown of food into smaller and smaller components, until they can be absorbed and assimilated into the body. The process of digestion has three stages: the cephalic phase, the gastric phase, and the intestinal phase.

<span class="mw-page-title-main">Microbiome</span> Microbial community assemblage and activity

A microbiome is the community of microorganisms that can usually be found living together in any given habitat. It was defined more precisely in 1988 by Whipps et al. as "a characteristic microbial community occupying a reasonably well-defined habitat which has distinct physio-chemical properties. The term thus not only refers to the microorganisms involved but also encompasses their theatre of activity". In 2020, an international panel of experts published the outcome of their discussions on the definition of the microbiome. They proposed a definition of the microbiome based on a revival of the "compact, clear, and comprehensive description of the term" as originally provided by Whipps et al., but supplemented with two explanatory paragraphs. The first explanatory paragraph pronounces the dynamic character of the microbiome, and the second explanatory paragraph clearly separates the term microbiota from the term microbiome.

Oral manifestations of systematic disease are signs and symptoms of disease occurring elsewhere in the body detected in the oral cavity and oral secretions. High blood sugar can be detected by sampling saliva. Saliva sampling may be a non-invasive way to detect changes in the gut microbiome and changes in systemic disease. Another example is tertiary syphilis, where changes to teeth can occur. Syphilis infection can be associated with longitudinal furrows of the tongue.

Porphyromonas pasteri is a Gram-negative, obligately anaerobic, non-spore-forming and non-motile bacterium from the genus Porphyromonas which has been isolated from the human saliva. Porphyromonas pasteri is associated with periodontitis, a disease that can lead to tooth loss, and has also been linked to other systemic diseases such as cardiovascular disease, rheumatoid arthritis, and certain cancers.

References

  1. Schwiertz A (2016). Microbiota of the human body : implications in health and disease. Switzerland: Springer. p. 45. ISBN   978-3-319-31248-4.
  2. 1 2 3 4 Nasidze I, Li J, Quinque D, Tang K, Stoneking M (April 2009). "Global diversity in the human salivary microbiome". Genome Research. 19 (4): 636–643. doi:10.1101/gr.084616.108. PMC   2665782 . PMID   19251737.
  3. Lindheim L, Bashir M, Münzker J, Trummer C, Zachhuber V, Pieber TR, et al. (25 August 2016). "The Salivary Microbiome in Polycystic Ovary Syndrome (PCOS) and Its Association with Disease-Related Parameters: A Pilot Study". Frontiers in Microbiology. 7: 1270. doi: 10.3389/fmicb.2016.01270 . PMC   4996828 . PMID   27610099.
  4. Shaw L, Ribeiro AL, Levine AP, Pontikos N, Balloux F, Segal AW, et al. (September 2017). Fraser CM (ed.). "The Human Salivary Microbiome Is Shaped by Shared Environment Rather than Genetics: Evidence from a Large Family of Closely Related Individuals". mBio. 8 (5): e01237–17. doi:10.1128/mBio.01237-17. PMC   5596345 . PMID   28900019.
  5. Shaw L, Ribeiro AL, Levine AP, Pontikos N, Balloux F, Segal AW, et al. (September 2017). Fraser CM (ed.). "The Human Salivary Microbiome Is Shaped by Shared Environment Rather than Genetics: Evidence from a Large Family of Closely Related Individuals". mBio. 8 (5): e01237–17. doi:10.1128/mBio.01237-17. PMC   5596345 . PMID   28900019.
  6. Wang K, Lu W, Tu Q, Ge Y, He J, Zhou Y, et al. (March 2016). "Preliminary analysis of salivary microbiome and their potential roles in oral lichen planus". Scientific Reports. 6 (1): 22943. Bibcode:2016NatSR...622943W. doi:10.1038/srep22943. PMC   4785528 . PMID   26961389.
  7. Lindheim L, Bashir M, Münzker J, Trummer C, Zachhuber V, Pieber TR, et al. (1 January 2016). "The Salivary Microbiome in Polycystic Ovary Syndrome (PCOS) and Its Association with Disease-Related Parameters: A Pilot Study". Frontiers in Microbiology. 7: 1270. doi: 10.3389/fmicb.2016.01270 . PMC   4996828 . PMID   27610099.
  8. Goodson JM, Hartman ML, Shi P, Hasturk H, Yaskell T, Vargas J, et al. (2017). "The salivary microbiome is altered in the presence of a high salivary glucose concentration". PLOS ONE. 12 (3): e0170437. Bibcode:2017PLoSO..1270437G. doi: 10.1371/journal.pone.0170437 . PMC   5331956 . PMID   28249034.

See also