Skin flora

Last updated
Depiction of the human body and bacteria that predominate Skin Microbiome20169-300.jpg
Depiction of the human body and bacteria that predominate

Skin flora, also called skin microbiota, refers to microbiota (communities of microorganisms) that reside on the skin, typically human skin.

Contents

Many of them are bacteria of which there are around 1,000 species upon human skin from nineteen phyla. [1] [2] Most are found in the superficial layers of the epidermis and the upper parts of hair follicles.

Skin flora is usually non-pathogenic, and either commensal (are not harmful to their host) or mutualistic (offer a benefit). The benefits bacteria can offer include preventing transient pathogenic organisms from colonizing the skin surface, either by competing for nutrients, secreting chemicals against them, or stimulating the skin's immune system. [3] However, resident microbes can cause skin diseases and enter the blood system, creating life-threatening diseases, particularly in immunosuppressed people. [3]

A major non-human skin flora is Batrachochytrium dendrobatidis , a chytrid and non-hyphal zoosporic fungus that causes chytridiomycosis, an infectious disease thought to be responsible for the decline in amphibian populations. [4]

Species variety

Bacteria

Scanning electron microscope image of Staphylococcus epidermidis one of roughly a thousand bacteria species present on human skin. Though usually not pathogenic, it can cause skin infections and even life-threatening illnesses in those that are immunocompromised. Staphylococcus epidermidis 01.png
Scanning electron microscope image of Staphylococcus epidermidis one of roughly a thousand bacteria species present on human skin. Though usually not pathogenic, it can cause skin infections and even life-threatening illnesses in those that are immunocompromised.

The estimate of the number of species present on skin bacteria has been radically changed by the use of 16S ribosomal RNA to identify bacterial species present on skin samples direct from their genetic material. Previously such identification had depended upon microbiological culture upon which many varieties of bacteria did not grow and so were hidden to science. [1]

Staphylococcus epidermidis and Staphylococcus aureus were thought from cultural based research to be dominant. However 16S ribosomal RNA research finds that while common, these species make up only 5% of skin bacteria. However, skin variety provides a rich and diverse habitat for bacteria. Most come from four phyla: Actinomycetota (51.8%), Bacillota (24.4%), Pseudomonadota (16.5%), and Bacteroidota (6.3%). [5]

Ecology of the 20 sites on the skin studied in the Human Microbiome Project Skin Microbiome20161-300.jpg
Ecology of the 20 sites on the skin studied in the Human Microbiome Project

There are three main ecological areas: sebaceous, moist, and dry. Propionibacteria and Staphylococci species were the main species in sebaceous areas. In moist places on the body Corynebacteria together with Staphylococci dominate. In dry areas, there is a mixture of species but Betaproteobacteria and Flavobacteriales are dominant. Ecologically, sebaceous areas had greater species richness than moist and dry ones. The areas with least similarity between people in species were the spaces between fingers, the spaces between toes, axillae, and umbilical cord stump. Most similarly were beside the nostril, nares (inside the nostril), and on the back. [1]

Frequency of the best studied skin microbes [3]
OrganismObservationsPathogenicity
Staphylococcus epidermidis Commonoccasionally pathogenic
Staphylococcus aureus Infrequentusually pathogenic
Staphylococcus warneri Infrequentoccasionally pathogenic
Streptococcus pyogenes Infrequentusually pathogenic
Streptococcus mitis Frequentoccasionally pathogenic
Cutibacterium acnes Frequentoccasionally pathogenic
Corynebacterium spp.Frequentoccasionally pathogenic
Acinetobacter johnsonii Frequentoccasionally pathogenic
Pseudomonas aeruginosa Infrequentoccasionally pathogenic

Fungal

A study of the area between toes in 100 young adults found 14 different genera of fungi. These include yeasts such as Candida albicans , Rhodotorula rubra , Torulopsis and Trichosporon cutaneum , dermatophytes (skin living fungi) such as Microsporum gypseum , and Trichophyton rubrum and nondermatophyte fungi (opportunistic fungi that can live in skin) such as Rhizopus stolonifer , Trichosporon cutaneum , Fusarium , Scopulariopsis brevicaulis , Curvularia , Alternaria alternata , Paecilomyces , Aspergillus flavus and Penicillium species. [6]

A study by the National Human Genome Research Institute in Bethesda, Maryland, researched the DNA of human skin fungi at 14 different locations on the body. These were the ear canal, between the eyebrows, the back of the head, behind the ear, the heel, toenails, between the toes, forearm, back, groin, nostrils, chest, palm, and the crook of the elbow. The study showed a large fungal diversity across the body, the richest habitat being the heel, which hosts about 80 species of fungi. By way of contrast, there are some 60 species in toenail clippings and 40 between the toes. Other rich areas are the palm, forearm and inside the elbow, with from 18 to 32 species. The head and the trunk hosted between 2 and 10 each. [7]

Umbilical microbiome

The umbilicus, or navel, is an area of the body that is rarely exposed to UV light, soaps, or bodily secretions [8] (the navel does not produce any secretions or oils) [9] and because it is an almost undisturbed community of bacteria [10] it is an excellent part of the skin microbiome to study. [11] The navel, or umbilicus is a moist microbiome of the body [12] (with high humidity and temperatures), [13] that contains a large amount of bacteria, [14] especially bacteria that favors moist conditions such as Corynebacterium [15] and Staphylococcus . [13]

The Belly Button Biodiversity Project began at North Carolina State University in early 2011 with two initial groups of 35 and 25 volunteers. [10] Volunteers were given sterile cotton swabs and were asked to insert the cotton swabs into their navels, to turn the cotton swab around three times and then return the cotton swab to the researchers in a vial [16] that contained a 0.5 ml 10% phosphate saline buffer. [10] Researchers at North Carolina State University, led by Jiri Hulcr, [17] then grew the samples in a culture until the bacterial colonies were large enough to be photographed and then these pictures were posted on the Belly Button Biodiversity Project's website (volunteers were given sample numbers so that they could view their own samples online). [16] These samples then were analyzed using 16S rDNA libraries so that strains that did not grow well in cultures could be identified. [10]

The researchers at North Carolina State University discovered that while it was difficult to predict every strain of bacteria in the microbiome of the navel that they could predict which strains would be prevalent and which strains of bacteria would be quite rare in the microbiome. [10] It was found that the navel microbiomes only contained a few prevalent types of bacteria (Staphylococcus, Corynebacterium, Actinobacteria, Clostridiales, and Bacilli) and many different types of rare bacteria. [10] Other types of rare organisms were discovered inside the navels of the volunteers including three types of Archaea, two of which were found in one volunteer who claimed not to have bathed or showered for many years. [10]

Staphylococcus and Corynebacterium were among the most common types of bacteria found in the navels of this project's volunteers and these types of bacteria have been found to be the most common types of bacteria found on the human skin in larger studies of the skin microbiome [18] (of which the Belly Button Biodiversity Project is a part). [10] (In these larger studies it has been found that females generally have more Staphylococcus living in their skin microbiomes [18] (usually Staphylococcus epidermidis) [16] and that men have more Corynebacterium living in their skin microbiomes.) [18]

According to the Belly Button Biodiversity Project [10] at North Carolina State University, there are two types of microorganisms found in the navel and surrounding areas. Transient bacteria (bacteria that does not reproduce) [12] forms the majority of the organisms found in the navel, and an estimated 1400 various strains were found in 95% of participants of the study. [19]

The Belly Button Biodiversity Project is ongoing and has now taken swabs from over 500 people. [10] The project was designed with the aim of countering that misconception that bacteria are always harmful to humans [20] and that humans are at war with bacteria. [21] In actuality, most strains of bacteria are harmless [13] if not beneficial for the human body. [22] Another of the project's goals is to foster public interest in microbiology. [17] Working in concert with the Human Microbiome Project, the Belly Button Biodiversity Project also studies the connections between human microbiomes and the factors of age, sex, ethnicity, location [17] and overall health. [23]

Relationship to host

Skin microflora can be commensals, mutualistic or pathogens. Often they can be all three depending upon the strength of the person's immune system. [3] Research upon the immune system in the gut and lungs has shown that microflora aids immunity development: however such research has only started upon whether this is the case with the skin. [3] Pseudomonas aeruginosa is an example of a mutualistic bacterium that can turn into a pathogen and cause disease: if it gains entry into the circulatory system it can result in infections in bone, joint, gastrointestinal, and respiratory systems. It can also cause dermatitis. However, P. aeruginosa produces antimicrobial substances such as pseudomonic acid (that are exploited commercially such as Mupirocin). This works against staphylococcal and streptococcal infections. P. aeruginosa also produces substances that inhibit the growth of fungus species such as Candida krusei , Candida albicans , Torulopsis glabrata , Saccharomyces cerevisiae and Aspergillus fumigatus . [24] It can also inhibit the growth of Helicobacter pylori . [25] So important is its antimicrobial actions that it has been noted that "removing P. aeruginosa from the skin, through use of oral or topical antibiotics, may inversely allow for aberrant yeast colonization and infection." [3]

Another aspect of bacteria is the generation of body odor. Sweat is odorless however several bacteria may consume it and create byproducts which may be considered putrid by humans (as in contrast to flies, for example, that may find them attractive/appealing). Several examples are:

Skin defenses

Antimicrobial peptides

The skin creates antimicrobial peptides such as cathelicidins that control the proliferation of skin microbes. Cathelicidins not only reduce microbe numbers directly but also cause the secretion of cytokine release which induces inflammation, angiogenesis, and reepithelialization. Conditions such as atopic dermatitis have been linked to the suppression in cathelicidin production. [29] In rosacea abnormal processing of cathelicidin cause inflammation. Psoriasis has been linked to self-DNA created from cathelicidin peptides that causes autoinflammation. A major factor controlling cathelicidin is vitamin D3. [30]

Acidity

The superficial layers of the skin are naturally acidic (pH 4–4.5) due to lactic acid in sweat and produced by skin bacteria. [31] At this pH mutualistic flora such as Staphylococci , Micrococci , Corynebacterium and Propionibacteria grow but not transient bacteria such as Gram-negative bacteria like Escherichia and Pseudomonas or Gram positive ones such as Staphylococcus aureus . [31] Another factor affecting the growth of pathological bacteria is that the antimicrobial substances secreted by the skin are enhanced in acidic conditions. [31] In alkaline conditions, bacteria cease to be attached to the skin and are more readily shed. It has been observed that the skin also swells under alkaline conditions and opens up allowing bacterial movement to the surface. [31]

Immune system

If activated, the immune system in the skin produces cell-mediated immunity against microbes such as dermatophytes (skin fungi). [32] One reaction is to increase stratum corneum turnover and so shed the fungus from the skin surface. Skin fungi such as Trichophyton rubrum have evolved to create substances that limit the immune response to them. [32] The shedding of skin is a general means to control the buildup of flora upon the skin surface. [33]

Skin diseases

Microorganisms play a role in noninfectious skin diseases such as atopic dermatitis, [34] rosacea, psoriasis, [35] and acne [36] Damaged skin can cause nonpathogenic bacteria to become pathogenic. [37] The diversity of species on the skin is related to later development of dermatitis. [38]

Acne vulgaris

Acne vulgaris is a common skin condition characterised by excessive sebum production by the pilosebaceous unit and inflammation of the skin. [39] Affected areas are typically colonised by Propionibacterium acnes ; a member of the commensal microbiota even in those without acne. [40] High populations of P. acnes are linked to acne vulgaris although only certain strains are strongly associated with acne while others with healthy skin. The relative population of P. acnes is similar between those with acne and those without. [39] [40]

Current treatment includes topical and systemic antibacterial drugs which result in decreased P. acnes colonisation and/or activity. [41] Potential probiotic treatment includes the use of Staphylococcus epidermidis to inhibit P. acnes growth. S. epidermidis produces succinic acid which has been shown to inhibit P. acnes growth. [42] Lactobacillus plantarum has also been shown to act as an anti-inflammatory and improve antimicrobial properties of the skin when applied topically. It was also shown to be effective in reducing acne lesion size. [43]

Atopic dermatitis

Individuals with atopic dermatitis have shown an increase in populations of Staphylococcus aureus in both lesional and nonlesional skin. [40] Atopic dermatitis flares are associated with low bacterial diversity due to colonisation by S. aureus and following standard treatment, bacterial diversity has been seen to increase.[ citation needed ]

Current treatments include combinations of topical or systemic antibiotics, corticosteroids, and diluted bleach baths. [44] Potential probiotic treatments include using the commensal skin bacteria, S. epidermidis, to inhibit S. aureus growth. During atopic dermatitis flares, population levels of S. epidermidis has been shown to increase as an attempt to control S. aureus populations. [40] [44]

Low gut microbial diversity in babies has been associated with an increased risk of atopic dermatitis. [45] Infants with atopic eczema have low levels of Bacteroides and high levels of Bacillota. Bacteroides have anti-inflammatory properties which are essential against dermatitis. [45] (See gut microbiota)

Psoriasis vulgaris

Psoriasis vulgaris typically affects drier skin sites such as elbows and knees. Dry areas of the skin tend to have high microbial diversity and fewer populations than sebaceous sites. [41] A study using swab sampling techniques show areas rich in Bacillota (mainly Streptococcus and Staphylococcus ) and Actinomycetota (mainly Corynebacterium and Propionibacterium ) are associated with psoriasis. [46] While another study using biopsies associate increased levels of Bacillota and Actinomycetota with healthy skin. [47] However most studies show that individuals affected by psoriasis have a lower microbial diversity in the affected areas.

Treatments for psoriasis include topical agents, phototherapy, and systemic agents. [48] Current research on the skin microbiota's role in psoriasis is inconsistent therefore there are no potential probiotic treatments.

Rosacea

Rosacea is typically connected to sebaceous sites of the skin. The skin mite Demodex folliculorum produce lipases that allow them to use sebum as a source of food therefore they have a high affinity for sebaceous skin sites. Although it is a part of the commensal skin microbiota, patients affected with rosacea show an increase in D. folliculorum compared to healthy individuals, suggesting pathogenicity. [49]

Bacillus oleronius , a Demodex associated microbe, is not typically found in the commensal skin microbiota but initiates inflammatory pathways whose starting mechanism is similar to rosacea patients. [40] Populations of S. epidermidis have also been isolated from pustules of rosacea patients. However it is possible that they were moved by Demodex to areas that favour growth as Demodex has shown to transport bacteria around the face. [50]

Current treatments include topical and oral antibiotics and laser therapy. [51] As current research has yet to show a clear mechanism for Demodex influence in rosacea, there are no potential probiotic treatments.

Clinical

Infected devices

Skin microbes are a potential source of infected medical devices such as catheters. [52]

Hygiene

The human skin is host to numerous bacterial and fungal species, some of which are known to be harmful, some known to be beneficial and the vast majority unresearched. The use of bactericidal and fungicidal soaps will inevitably lead to bacterial and fungal populations which are resistant to the chemicals employed (see drug resistance).

Contagion

Skin flora do not readily pass between people: 30 seconds of moderate friction and dry hand contact results in a transfer of only 0.07% of natural hand flora from naked with a greater percentage from gloves. [53]

Removal

The most effective (60–80% reduction) antimicrobial washing is with ethanol, isopropanol, and n-propanol. Viruses are most affected by high (95%) concentrations of ethanol, while bacteria are more affected by n-propanol. [54]

Unmedicated soaps are not very effective as illustrated by the following data. Health care workers washed their hands once in nonmedicated liquid soap for 30 seconds. The students/technicians for 20 times. [55]

Skin flora upon two hospital groups in colony-forming units per ml.
group and hand skin conditionunwashedwashed
Health care workers healthy3.473.15
Health care workers damaged3.333.29
Students/technicians healthy4.393.54
Students/technicians damaged4.584.43

An important use of hand washing is to prevent the transmission of antibiotic resistant skin flora that cause hospital-acquired infections such as methicillin-resistant Staphylococcus aureus. While such flora have become antibiotic resistant due to antibiotics there is no evidence that recommended antiseptics or disinfectants selects for antibiotic-resistant organisms when used in hand washing. [56] However, many strains of organisms are resistant to some of the substances used in antibacterial soaps such as triclosan. [56]

One study of bar soaps in dentist clinics found they all had their own flora and on average from two to five different genera of microorganisms with those used most more likely to have more species varieties. [57] Another study of bar soaps in public toilets found even more flora. [58] Another study found that very dry soaps are not colonized while all are that rest in pools of water. [59] However, one experiment using soaps inoculated with Pseudomonas aeruginosa and Escherichia coli that washing with inoculated bar soap did not transmit these bacteria to participants hands. [60]

Damaged skin

Washing skin repeatedly can damage the protective external layer and cause transepidermal loss of water. This can be seen in roughness characterized by scaling and dryness, itchiness, dermatitis provoked by microorganisms and allergens penetrating the corneal layer and redness. Wearing gloves can cause further problems since it produces a humid environment favoring the growth of microbes and also contains irritants such as latex and talcum powder. [61]

Hand washing can damage skin because the stratum corneum top layer of skin consists of 15 to 20 layers of keratin disks, corneocytes, each of which is each surrounded by a thin film of skin lipids which can be removed by alcohols and detergents. [62]

Damaged skin defined by extensive cracking of skin surface, widespread reddening or occasional bleeding has also been found to be more frequently colonized by Staphylococcus hominis and these were more likely to be methicillin resistant. [61] Though not related to greater antibiotic resistance, damaged skin was also more like to be colonized by Staphylococcus aureus , gram-negative bacteria, Enterococci and Candida . [61]

Comparison with other flora

The skin flora is different from that of the gut which is predominantly Bacillota and Bacteroidota. [63] There is also low level of variation between people that is not found in gut studies. [5] Both gut and skin flora however lack the diversity found in soil flora. [1]

See also

Related Research Articles

<span class="mw-page-title-main">Human microbiome</span> Microorganisms in or on human skin and biofluids

The human microbiome is the aggregate of all microbiota that reside on or within human tissues and biofluids along with the corresponding anatomical sites in which they reside, including the gastrointestinal tract, skin, mammary glands, seminal fluid, uterus, ovarian follicles, lung, saliva, oral mucosa, conjunctiva, and the biliary tract. Types of human microbiota include bacteria, archaea, fungi, protists, and viruses. Though micro-animals can also live on the human body, they are typically excluded from this definition. In the context of genomics, the term human microbiome is sometimes used to refer to the collective genomes of resident microorganisms; however, the term human metagenome has the same meaning.

<span class="mw-page-title-main">Dandruff</span> Skin condition of the scalp

Dandruff is a skin condition that mainly affects the scalp. Symptoms include flaking and sometimes mild itchiness. It can result in social or self-esteem problems. A more severe form of the condition, which includes inflammation of the skin, is known as seborrhoeic dermatitis.

<i>Cutibacterium acnes</i> Species of bacterium

Cutibacterium acnes is the relatively slow-growing, typically aerotolerant anaerobic, gram-positive bacterium (rod) linked to the skin condition of acne; it can also cause chronic blepharitis and endophthalmitis, the latter particularly following intraocular surgery. Its genome has been sequenced and a study has shown several genes can generate enzymes for degrading skin and proteins that may be immunogenic.

<span class="mw-page-title-main">Blepharitis</span> Medical condition of the eyelid

Blepharitis, sometimes known as granulated eyelids, is one of the most common ocular conditions characterized by inflammation, scaling, reddening, and crusting of the eyelid. This condition may also cause swelling, burning, itching, or a grainy sensation when introducing foreign objects or substances to the eye. Although blepharitis by itself is not sight-threatening, it can lead to permanent alterations of the eyelid margin. The primary cause is bacteria and inflammation from congested meibomian oil glands at the base of each eyelash. Other conditions may give rise to blepharitis, whether they be infectious or noninfectious, including, but not limited to, bacterial infections or allergies.

<i>Demodex</i> Genus of mites that live on mammals

Demodex is a genus of tiny mites that live in or near hair follicles of mammals. Around 65 species of Demodex are known. Two species live on humans: Demodex folliculorum and Demodex brevis, both frequently referred to as eyelash mites, alternatively face mites or skin mites.

Staphylococcus caprae is a Gram-positive, coccus bacteria and a member of the genus Staphylococcus. S. caprae is coagulase-negative. It was originally isolated from goats, but members of this species have also been isolated from human samples.

<i>Staphylococcus epidermidis</i> Species of bacterium

Staphylococcus epidermidis is a Gram-positive bacterium, and one of over 40 species belonging to the genus Staphylococcus. It is part of the normal human microbiota, typically the skin microbiota, and less commonly the mucosal microbiota and also found in marine sponges. It is a facultative anaerobic bacteria. Although S. epidermidis is not usually pathogenic, patients with compromised immune systems are at risk of developing infection. These infections are generally hospital-acquired. S. epidermidis is a particular concern for people with catheters or other surgical implants because it is known to form biofilms that grow on these devices. Being part of the normal skin microbiota, S. epidermidis is a frequent contaminant of specimens sent to the diagnostic laboratory.

<span class="mw-page-title-main">Gut microbiota</span> Community of microorganisms in the gut

Gut microbiota, gut microbiome, or gut flora are the microorganisms, including bacteria, archaea, fungi, and viruses, that live in the digestive tracts of animals. The gastrointestinal metagenome is the aggregate of all the genomes of the gut microbiota. The gut is the main location of the human microbiome. The gut microbiota has broad impacts, including effects on colonization, resistance to pathogens, maintaining the intestinal epithelium, metabolizing dietary and pharmaceutical compounds, controlling immune function, and even behavior through the gut–brain axis.

Dysbiosis is characterized by a disruption to the microbiome resulting in an imbalance in the microbiota, changes in their functional composition and metabolic activities, or a shift in their local distribution. For example, a part of the human microbiota such as the skin flora, gut flora, or vaginal flora, can become deranged, with normally dominating species underrepresented and normally outcompeted or contained species increasing to fill the void. Similar to the human gut microbiome, diverse microbes colonize the plant rhizosphere, and dysbiosis in the rhizosphere, can negatively impact plant health. Dysbiosis is most commonly reported as a condition in the gastrointestinal tract or plant rhizosphere.

<span class="mw-page-title-main">Vaginal flora</span> Microorganisms present in the vagina

Vaginal flora, vaginal microbiota or vaginal microbiome are the microorganisms that colonize the vagina. They were discovered by the German gynecologist Albert Döderlein in 1892 and are part of the overall human flora. The amount and type of bacteria present have significant implications for an individual's overall health. The primary colonizing bacteria of a healthy individual are of the genus Lactobacillus, such as L. crispatus, and the lactic acid they produce is thought to protect against infection by pathogenic species.

<span class="mw-page-title-main">Oral microbiology</span>

Oral microbiology is the study of the microorganisms (microbiota) of the oral cavity and their interactions between oral microorganisms or with the host. The environment present in the human mouth is suited to the growth of characteristic microorganisms found there. It provides a source of water and nutrients, as well as a moderate temperature. Resident microbes of the mouth adhere to the teeth and gums to resist mechanical flushing from the mouth to stomach where acid-sensitive microbes are destroyed by hydrochloric acid.

<span class="mw-page-title-main">Staphylococcal infection</span> Medical condition

A staphylococcal infection or staph infection is an infection caused by members of the Staphylococcus genus of bacteria.

<span class="mw-page-title-main">Nadifloxacin</span> Chemical compound

Nadifloxacin is a topical fluoroquinolone antibiotic for the treatment of acne vulgaris. It is also used to treat bacterial skin infections.

<i>Staphylococcus capitis</i> Species of bacterium

Staphylococcus capitis is a coagulase-negative species (CoNS) of Staphylococcus. It is part of the normal flora of the skin of the human scalp, face, neck, scrotum, and ears and has been associated with prosthetic valve endocarditis, but is rarely associated with native valve infection.

<i>Staphylococcus</i> Genus of Gram-positive bacteria

Staphylococcus is a genus of Gram-positive bacteria in the family Staphylococcaceae from the order Bacillales. Under the microscope, they appear spherical (cocci), and form in grape-like clusters. Staphylococcus species are facultative anaerobic organisms.

The lung microbiota is the pulmonary microbial community consisting of a complex variety of microorganisms found in the lower respiratory tract particularly on the mucous layer and the epithelial surfaces. These microorganisms include bacteria, fungi, viruses and bacteriophages. The bacterial part of the microbiota has been more closely studied. It consists of a core of nine genera: Prevotella, Sphingomonas, Pseudomonas, Acinetobacter, Fusobacterium, Megasphaera, Veillonella, Staphylococcus, and Streptococcus. They are aerobes as well as anaerobes and aerotolerant bacteria. The microbial communities are highly variable in particular individuals and compose of about 140 distinct families. The bronchial tree for instance contains a mean of 2000 bacterial genomes per cm2 surface. The harmful or potentially harmful bacteria are also detected routinely in respiratory specimens. The most significant are Moraxella catarrhalis, Haemophilus influenzae, and Streptococcus pneumoniae. They are known to cause respiratory disorders under particular conditions namely if the human immune system is impaired. The mechanism by which they persist in the lower airways in healthy individuals is unknown.

Skin immunity is a property of skin that allows it to resist infections from pathogens. In addition to providing a passive physical barrier against infection, the skin also contains elements of the innate and adaptive immune systems which allows it to actively fight infections. Hence the skin provides defense in depth against infection.

The Human Microbiome Project (HMP), completed in 2012, laid the foundation for further investigation into the role the microbiome plays in overall health and disease. One area of particular interest is the role which delivery mode plays in the development of the infant/neonate microbiome and what potential implications this may have long term. It has been found that infants born via vaginal delivery have microbiomes closely mirroring that of the mother's vaginal microbiome, whereas those born via cesarean section tend to resemble that of the mother's skin. One notable study from 2010 illustrated an abundance of Lactobacillus and other typical vaginal genera in stool samples of infants born via vaginal delivery and an abundance of Staphylococcus and Corynebacterium, commonly found on the skin surfaces, in stool samples of infants born via cesarean section. From these discoveries came the concept of vaginal seeding, also known as microbirthing, which is a procedure whereby vaginal fluids are applied to a new-born child delivered by caesarean section. The idea of vaginal seeding was explored in 2015 after Maria Gloria Dominguez-Bello discovered that birth by caesarean section significantly altered the newborn child's microbiome compared to that of natural birth. The purpose of the technique is to recreate the natural transfer of bacteria that the baby gets during a vaginal birth. It involves placing swabs in the mother's vagina, and then wiping them onto the baby's face, mouth, eyes and skin. Due to the long-drawn nature of studying the impact of vaginal seeding, there are a limited number of studies available that support or refute its use. The evidence suggests that applying microbes from the mother's vaginal canal to the baby after cesarean section may aid in the partial restoration of the infant's natural gut microbiome with an increased likelihood of pathogenic infection to the child via vertical transmission.

<span class="mw-page-title-main">Human milk microbiome</span> Community of microorganisms in human milk

The human milk microbiota, also known as human milk probiotics (HMP), encompasses the microbiota–the community of microorganisms–present within the human mammary glands and breast milk. Contrary to the traditional belief that human breast milk is sterile, advancements in both microbial culture and culture-independent methods have confirmed that human milk harbors diverse communities of bacteria. These communities are distinct in composition from other microbial populations found within the human body which constitute the human microbiome.

References

  1. 1 2 3 4 Grice EA, Kong HH, Conlan S (2009). "Topographical and Temporal Diversity of the Human Skin Microbiome". Science . 324 (5931): 1190–92. Bibcode:2009Sci...324.1190G. doi:10.1126/science.1171700. PMC   2805064 . PMID   19478181.
  2. "Your Body Is a Wonderland ... of Bacteria". www.science.org. 28 May 2009. Retrieved 2023-01-02.
  3. 1 2 3 4 5 6 Cogen AL, Nizet V, Gallo RL (2008). "Skin microbiota: a source of disease or defence?". Br J Dermatol. 158 (3): 442–55. doi:10.1111/j.1365-2133.2008.08437.x. PMC   2746716 . PMID   18275522.
  4. Voyles, Jamie; Young, Sam; Berger, Lee; Campbell, Craig; Voyles, Wyatt F.; Dinudom, Anuwat; Cook, David; Webb, Rebecca; Alford, Ross A.; Skerratt, Lee F.; Speare, Rick (2009-10-23). "Pathogenesis of Chytridiomycosis, a Cause of Catastrophic Amphibian Declines". Science. 326 (5952): 582–585. Bibcode:2009Sci...326..582V. doi:10.1126/science.1176765. ISSN   0036-8075. PMID   19900897. S2CID   52850132.
  5. 1 2 Grice EA, Kong HH, Renaud G, Young AC, Bouffard GG, Blakesley RW, Wolfsberg TG, Turner ML, Segre JA (2008). "A diversity profile of the human skin microbiota". Genome Res. 18 (7): 1043–50. doi:10.1101/gr.075549.107. PMC   2493393 . PMID   18502944.
  6. Oyeka CA, Ugwu LO (2002). "Fungal flora of human toe webs". Mycoses. 45 (11–12): 488–91. doi:10.1046/j.1439-0507.2002.00796.x. PMID   12472726. S2CID   8789635.
  7. Helen Briggs (2013-05-22). "Feet home to more than 100 fungi". BBC News. Retrieved 2023-01-02.
  8. Ecological Society of America (2011-08-04). "Bellybutton microbiomes: Ecological research on the human biome" (Press Release). ScienceDaily. Retrieved 2013-04-20.
  9. Nierenberg, Cari (2011-04-14). "New meaning to 'navel-gazing': Scientists study belly button bacteria" . Retrieved 2013-09-29.
  10. 1 2 3 4 5 6 7 8 9 10 Hulcr, Jirir; Andrew M. Latimer; Jessica B. Henley; Nina R. Rountree; Noah Fierer; Andrea Lucky; Margaret D. Lowman; Robert R. Dunn (7 November 2012). "A Jungle in There: Bacteria in Belly Buttons are Highly Diverse, but Predictable". PLOS ONE. 7 (11): e47712. Bibcode:2012PLoSO...747712H. doi: 10.1371/journal.pone.0047712 . PMC   3492386 . PMID   23144827.
  11. "The Wild Life of Your Body" . Retrieved 1 September 2013.
  12. 1 2 Kong, Hiedi (June 17, 2011). "Skin microbiome: genomics-based insights into the diversity and role of skin microbes". Trends Mol. Med. 17 (6): 320–8. doi:10.1016/j.molmed.2011.01.013. PMC   3115422 . PMID   21376666.
  13. 1 2 3 Grice, Elizabeth; Julia Segre (9 April 2011). "The Skin Microbiome". Nat Rev Microbiol. 9 (4): 244–53. doi:10.1038/nrmicro2537. PMC   3535073 . PMID   21407241.
  14. Kaplan, Karen (1 June 2009). "Study shows you're covered in bacteria - live with it". The Star. Archived from the original on 11 November 2013. Retrieved 29 September 2013.
  15. Grice, Elizabeth; Heidi H. Kong; Sean Conlan; Clayton B. Deming; Joie Davis; Alice C. Young; Gerard G. Bouffard; Robert W. Blakesley; Patrick R. Murray; Eric D. Green; Maria L. Turner; Julia A. Segre (29 May 2009). "Topographical and Temporal Diversity of the Human Skin Microbiome". Science. 324 (5931): 1190–2. Bibcode:2009Sci...324.1190G. doi:10.1126/science.1171700. PMC   2805064 . PMID   19478181.
  16. 1 2 3 Parker-Pope, Tara (2011-04-14). "What's in Your Belly Button" . Retrieved 2013-09-29.
  17. 1 2 3 Nierenberg, Cari (14 April 2011). "New meaning to 'navel-gazing': Scientists study Belly Button Bacteria". NBC News . Retrieved 2013-09-29.
  18. 1 2 3 Callewaert, Chris; Frederiek-Maarten Kerckhof; Michael S. Granitsiotis; Mireille Van Gele; Tom Van de Wiele; Nico Boon (12 August 2013). "Characterization of Staphylococcus and Corynebacterium Clusters in the Human Axillary Region". PLOS ONE. 8 (8): e70538. Bibcode:2013PLoSO...870538C. doi: 10.1371/journal.pone.0070538 . PMC   3741381 . PMID   23950955.
  19. Saunders, Chris (2011-07-12). "Navel gazing at NC State leads to important discovery". Red & White for Life :: NC State University Alumni Association. Retrieved 2013-04-20.
  20. Aldhous, Peter. "Belly button biome is more than a piece of fluff". Archived from the original on 2013-10-02. Retrieved 2013-09-29.
  21. "Human microbes" . Retrieved 2013-09-29.
  22. Ahmad, Salar; Shailly Anand; Rup Lal (September 2012). "Skin Commensals Regulate Skin Immunity". Indian J. Microbiol. 52 (3): 517–8. doi:10.1007/s12088-012-0301-z. PMC   3460106 . PMID   23997352.
  23. Grice, Elizabeth; Julia Segre (6 June 2012). "The Human Microbiome: Our Second Genome". Annu Rev Genom Hum Genet. 13 (1): 151–70. doi:10.1146/annurev-genom-090711-163814. PMC   3518434 . PMID   22703178.
  24. Kerr JR (1994). "Suppression of fungal growth exhibited by Pseudomonas aeruginosa". J Clin Microbiol. 32 (2): 525–7. doi:10.1128/JCM.32.2.525-527.1994. PMC   263067 . PMID   8150966.
  25. Krausse R, Piening K, Ullmann U (2005). "Inhibitory effects of various micro-organisms on the growth of Helicobacter pylori". Lett Appl Microbiol. 40 (1): 81–6. doi: 10.1111/j.1472-765X.2004.01632.x . PMID   15613007. S2CID   2253604.
  26. Himmi, E. H.; Bories, A.; Boussaid, A.; Hassani, L. (2000-04-01). "Propionic acid fermentation of glycerol and glucose by Propionibacterium acidipropionici and Propionibacterium freudenreichii ssp.shermanii". Applied Microbiology and Biotechnology. 53 (4): 435–440. doi:10.1007/s002530051638. ISSN   1432-0614. PMID   10803900.
  27. Ara K, Hama M, Akiba S, et al. (2006). "Foot odor due to microbial metabolism and its control". Can. J. Microbiol. 52 (4): 357–64. doi:10.1139/w05-130. PMID   16699586. S2CID   36221022.
  28. Ara K, Hama M, Akiba S, Koike K, Okisaka K, Hagura T, Kamiya T, Tomita F (2006). "Foot odor due to microbial metabolism and its control". Can J Microbiol. 52 (4): 357–64. doi:10.1139/w05-130. PMID   16699586.[ permanent dead link ]
  29. Patra, Vijaykumar; Mayer, Gerlinde; Gruber-Wackernagel, Alexandra; Horn, Michael; Lembo, Serena; Wolf, Peter (2018). "Unique profile of antimicrobial peptide expression in polymorphic light eruption lesions compared to healthy skin, atopic dermatitis, and psoriasis". Photodermatology, Photoimmunology & Photomedicine. 34 (2): 137–144. doi:10.1111/phpp.12355. PMC   5888155 . PMID   29044786.
  30. Schauber J, Gallo RL (2008). "Antimicrobial peptides and the skin immune defense system". J Allergy Clin Immunol. 122 (2): 261–6. doi:10.1016/j.jaci.2008.03.027. PMC   2639779 . PMID   18439663.
  31. 1 2 3 4 Lambers H, Piessens S, Bloem A, Pronk H, Finkel P (2006). "Natural skin surface pH is on average below 5, which is beneficial for its resident flora". International Journal of Cosmetic Science. 28 (5): 359–70. doi:10.1111/j.1467-2494.2006.00344.x. PMID   18489300. S2CID   25191984.
  32. 1 2 Dahl MV (1993). "Suppression of immunity and inflammation by products produced by dermatophytes". J Am Acad Dermatol. 28 (5 Pt 1): S19–S23. doi:10.1016/s0190-9622(09)80303-4. PMID   8496406.
  33. Percival, Steven L; Emanuel, Charlotte; Cutting, Keith F; Williams, David W (February 2012). "Microbiology of the skin and the role of biofilms in infection". International Wound Journal. 9 (1): 14–32. doi:10.1111/j.1742-481X.2011.00836.x. ISSN   1742-4801. PMC   7950481 . PMID   21973162.
  34. Baker BS (2006). "The role of microorganisms in atopic dermatitis". Clin Exp Immunol. 144 (1): 1–9. doi:10.1111/j.1365-2249.2005.02980.x. PMC   1809642 . PMID   16542358.
  35. Paulino LC, Tseng CH, Strober BE, Blaser MJ (2006). "Molecular analysis of fungal microbiota in samples from healthy human skin and psoriatic lesions". J Clin Microbiol. 44 (8): 2933–41. doi:10.1128/JCM.00785-06. PMC   1594634 . PMID   16891514.
  36. Holland KT, Cunliffe WJ, Roberts CD (1977). "Acne vulgaris: an investigation into the number of anaerobic diphtheroids and members of the Micrococcaceae in normal and acne skin". Br J Dermatol. 96 (6): 623–6. doi:10.1111/j.1365-2133.1977.tb05206.x. PMID   141301. S2CID   37507292.
  37. Roth RR, James WD (1988). "Microbial ecology of the skin". Annu Rev Microbiol. 42 (1): 441–64. doi:10.1146/annurev.mi.42.100188.002301. PMID   3144238.
  38. Williams, Michael R.; Gallo, Richard L. (2017). "Evidence that Human Skin Microbiome Dysbiosis Promotes Atopic Dermatitis". Journal of Investigative Dermatology. 137 (12): 2460–2461. doi:10.1016/j.jid.2017.09.010. PMC   5814121 . PMID   29169458.
  39. 1 2 Fitz-Gibbon, S; Shuta, T; Bor-Han, C; Nguyen, L; Du, C; Minghsun, L; Elashoff, D; Erfe, MC; Loncaric, A; Kim, J; Modlin, RL; Miller, JF; Sodergren, E; Craft, N; Weinstock, GM; Li, H (2013). "Propionibacterium acnes Strain Populations in the Human Skin Microbiome Associated with Acne". J Invest Dermatol. 133 (9): 2152–2160. doi:10.1038/jid.2013.21. PMC   3745799 . PMID   23337890.
  40. 1 2 3 4 5 Grice, EA (2014). "The skin microbiome: potential for novel diagnostic and therapeutic approaches to cutaneous disease". Semin Cutan Med Surg. 33 (2): 98–103. doi:10.12788/j.sder.0087. PMC   4425451 . PMID   25085669. Archived from the original on 2015-04-11.
  41. 1 2 Hannigan, GD; Grice, EA (2013). "Microbial ecology of the skin in the era of metagenomics and molecular microbiology". Cold Spring Harb Perspect Med. 3 (12): a015362. doi:10.1101/cshperspect.a015362. PMC   3839604 . PMID   24296350.
  42. Muya, S; Wang, Y; Yu, J; Kuo, S; Coda, A; Jiang, Y; Gallo, RL; Huang, CM (2013). "Fermentation of Propionibacterium acnes, a Commensal Bacterium in the Human Skin Microbiome, as Skin Probiotics against Methicillin-Resistant Staphylococcus aureus". PLOS ONE. 8 (2): e55380. Bibcode:2013PLoSO...855380S. doi: 10.1371/journal.pone.0055380 . PMC   3566139 . PMID   23405142.
  43. Muizzuddin, N; Maher, W; Sullivan, M; Schnittger, S; Mammone, T (2012). "Physiological effect of probiotic on skin". J Cosmet Sci. 63 (6): 385–95. PMID   23286870.
  44. 1 2 Kong, HH; Oh, J; Deming, C; Conlan, S; Grice, EA; Beatson, MA; Nomicos, E; Polley, EC; Komarow, HD; NISC Comparative Sequence Program; Murray, PR; Turner, ML; Segre, JA (2012). "Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis". Genome Res. 22 (5): 850–9. doi:10.1101/gr.131029.111. PMC   3337431 . PMID   22310478.
  45. 1 2 Abrahamsson, TR; Jakobsson, HE; Andersson, AF; Björkstén, B; Engstrand, L; Jenmalm, MC (2012). "Low diversity of the gut microbiota in infants with atopic eczema". J Allergy Clin Immunol. 129 (2): 434–40, 440.e1–2. doi: 10.1016/j.jaci.2011.10.025 . PMID   22153774.
  46. Alekseyenko, AV; Perez-Perez, GI; De Souza, A; Strober, B; Gao, Z; Bihan, M; Li, K; Methé, BA; Blaser, MJ (2013). "Community differentiation of the cutaneous microbiota in psoriasis". Microbiome. 1 (1): 31. doi: 10.1186/2049-2618-1-31 . PMC   4177411 . PMID   24451201.
  47. Fahlén, A; Engstrand, L; Baker, BS; Powles, A; Fry, L (2012). "Comparison of bacterial microbiota in skin biopsies from normal and psoriatic skin". Arch Dermatol Res. 304 (1): 15–22. doi:10.1007/s00403-011-1189-x. PMID   22065152. S2CID   9169314.
  48. Menter, A; Griffiths, CE (2007). "Current and future management of psoriasis". Lancet. 370 (9583): 272–84. doi:10.1016/S0140-6736(07)61129-5. PMID   17658398. S2CID   7907468.
  49. Casas, C; Paul, C; Lahfa, M; Livideanu, B; Lejeune, O; Alvarez-Georges, S; Saint-Martory, C; Degouy, A; Mengeaud, V; Ginisty, H; Durbise, E; Schmitt, AM; Redoulès, D (2012). "Quantification of Demodex folliculorum by PCR in rosacea and its relationship to skin innate immune activation". Exp Dermatol. 21 (12): 906–10. doi:10.1111/exd.12030. PMID   23171449. S2CID   19722615.
  50. Jarmuda, S; O'Reilly, N; Zaba, R; Jakubowicz, O; Szkaradkiewicz, A; Kavanagh, K (2012). "Potential role of Demodex mites and bacteria in the induction of rosacea". J Med Microbiol. 61 (Pt 11): 1504–10. doi: 10.1099/jmm.0.048090-0 . PMID   22933353.
  51. Cohen, AF; Tiemstra, JD (2002). "Diagnosis and treatment of rosacea". J Am Board Fam Pract. 15 (3): 214–7. PMID   12038728.
  52. Martín-Rabadán P, Gijón P, Alcalá L, Rodríguez-Créixems M, Alvarado N, Bouza E (2008). "Propionibacterium acnes is a common colonizer of intravascular catheters". J Infect. 56 (4): 257–60. doi:10.1016/j.jinf.2008.01.012. PMID   18336916.
  53. Lingaas E, Fagernes M (2009). "Development of a method to measure bacterial transfer from hands". J Hosp Infect. 72 (1): 43–9. doi:10.1016/j.jhin.2009.01.022. PMID   19282052.
  54. Kampf G, Kramer A (2004). "Epidemiologic background of hand hygiene and evaluation of the most important agents for scrubs and rubs". Clin Microbiol Rev. 17 (4): 863–93. doi:10.1128/CMR.17.4.863-893.2004. PMC   523567 . PMID   15489352.
  55. Borges LF, Silva BL, Gontijo Filho PP (2007). "Hand washing: changes in the skin flora". Am J Infect Control. 35 (6): 417–20. doi:10.1016/j.ajic.2006.07.012. PMID   17660014.
  56. 1 2 Weber DJ, Rutala WA (2006). "Use of germicides in the home and the healthcare setting: is there a relationship between germicide use and antibiotic resistance?". Infect Control Hosp Epidemiol. 27 (10): 1107–19. doi:10.1086/507964. PMID   17006819. S2CID   20734025.
  57. Hegde PP, Andrade AT, Bhat K (2006). "Microbial contamination of "in use" bar soap in dental clinics". Indian J Dent Res. 17 (2): 70–3. doi: 10.4103/0970-9290.29888 . PMID   17051871.
  58. Kabara JJ, Brady MB (1984). "Contamination of bar soaps under "in-use" conditions". J Environ Pathol Toxicol Oncol. 5 (4–5): 1–14. PMID   6394740.
  59. Afolabi BA, Oduyebo OO, Ogunsola FT (2007). "Bacterial flora of commonly used soaps in three hospitals in Nigeria". East Afr Med J. 84 (10): 489–95. doi: 10.4314/eamj.v84i10.9567 . PMID   18232270.
  60. Heinze JE, Yackovich F (1988). "Washing with contaminated bar soap is unlikely to transfer bacteria". Epidemiol Infect. 101 (1): 135–42. doi:10.1017/s0950268800029290. PMC   2249330 . PMID   3402545.
  61. 1 2 3 Larson EL, Hughes CA, Pyrek JD, Sparks SM, Cagatay EU, Bartkus JM (1998). "Changes in bacterial flora associated with skin damage on hands of health care personnel". Am J Infect Control. 26 (5): 513–21. doi: 10.1016/s0196-6553(98)70025-2 . PMID   9795681.
  62. Kownatzki E (2003). "Hand hygiene and skin health". J Hosp Infect. 55 (4): 239–45. doi:10.1016/j.jhin.2003.08.018. PMID   14629966.
  63. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA (2005). "Diversity of the human intestinal microbial flora". Science. 308 (5728): 1635–8. Bibcode:2005Sci...308.1635E. doi:10.1126/science.1110591. PMC   1395357 . PMID   15831718.