Skin flora, also called skin microbiota, refers to microbiota (communities of microorganisms) that reside on the skin, typically human skin.
Many of them are bacteria of which there are around 1,000 species upon human skin from nineteen phyla. [1] [2] Most are found in the superficial layers of the epidermis and the upper parts of hair follicles.
Skin flora is usually non-pathogenic, and either commensal (are not harmful to their host) or mutualistic (offer a benefit). The benefits bacteria can offer include preventing transient pathogenic organisms from colonizing the skin surface, either by competing for nutrients, secreting chemicals against them, or stimulating the skin's immune system. [3] However, resident microbes can cause skin diseases and enter the blood system, creating life-threatening diseases, particularly in immunosuppressed people. [3]
A major non-human skin flora is Batrachochytrium dendrobatidis , a chytrid and non-hyphal zoosporic fungus that causes chytridiomycosis, an infectious disease thought to be responsible for the decline in amphibian populations. [4]
The estimate of the number of species present on skin bacteria has been radically changed by the use of 16S ribosomal RNA to identify bacterial species present on skin samples direct from their genetic material. Previously such identification had depended upon microbiological culture upon which many varieties of bacteria did not grow and so were hidden to science. [1]
Staphylococcus epidermidis and Staphylococcus aureus were thought from cultural based research to be dominant. However 16S ribosomal RNA research finds that while common, these species make up only 5% of skin bacteria. However, skin variety provides a rich and diverse habitat for bacteria. Most come from four phyla: Actinomycetota (51.8%), Bacillota (24.4%), Pseudomonadota (16.5%), and Bacteroidota (6.3%). [5]
There are three main ecological areas: sebaceous, moist, and dry. Propionibacteria and Staphylococci species were the main species in sebaceous areas. In moist places on the body Corynebacteria together with Staphylococci dominate. In dry areas, there is a mixture of species but Betaproteobacteria and Flavobacteriales are dominant. Ecologically, sebaceous areas had greater species richness than moist and dry ones. The areas with least similarity between people in species were the spaces between fingers, the spaces between toes, axillae, and umbilical cord stump. Most similarly were beside the nostril, nares (inside the nostril), and on the back. [1]
Organism | Observations | Pathogenicity |
---|---|---|
Staphylococcus epidermidis | Common | occasionally pathogenic |
Staphylococcus aureus | Infrequent | usually pathogenic |
Staphylococcus warneri | Infrequent | occasionally pathogenic |
Streptococcus pyogenes | Infrequent | usually pathogenic |
Streptococcus mitis | Frequent | occasionally pathogenic |
Cutibacterium acnes | Frequent | occasionally pathogenic |
Corynebacterium spp. | Frequent | occasionally pathogenic |
Acinetobacter johnsonii | Frequent | occasionally pathogenic |
Pseudomonas aeruginosa | Infrequent | occasionally pathogenic |
A study of the area between toes in 100 young adults found 14 different genera of fungi. These include yeasts such as Candida albicans , Rhodotorula rubra , Torulopsis and Trichosporon cutaneum , dermatophytes (skin living fungi) such as Microsporum gypseum , and Trichophyton rubrum and nondermatophyte fungi (opportunistic fungi that can live in skin) such as Rhizopus stolonifer , Trichosporon cutaneum , Fusarium , Scopulariopsis brevicaulis , Curvularia , Alternaria alternata , Paecilomyces , Aspergillus flavus and Penicillium species. [6]
A study by the National Human Genome Research Institute in Bethesda, Maryland, researched the DNA of human skin fungi at 14 different locations on the body. These were the ear canal, between the eyebrows, the back of the head, behind the ear, the heel, toenails, between the toes, forearm, back, groin, nostrils, chest, palm, and the crook of the elbow. The study showed a large fungal diversity across the body, the richest habitat being the heel, which hosts about 80 species of fungi. By way of contrast, there are some 60 species in toenail clippings and 40 between the toes. Other rich areas are the palm, forearm and inside the elbow, with from 18 to 32 species. The head and the trunk hosted between 2 and 10 each. [7]
The umbilicus, or navel, is an area of the body that is rarely exposed to UV light, soaps, or bodily secretions [8] (the navel does not produce any secretions or oils) [9] and because it is an almost undisturbed community of bacteria [10] it is an excellent part of the skin microbiome to study. [11] The navel, or umbilicus is a moist microbiome of the body [12] (with high humidity and temperatures), [13] that contains a large amount of bacteria, [14] especially bacteria that favors moist conditions such as Corynebacterium [15] and Staphylococcus . [13]
The Belly Button Biodiversity Project began at North Carolina State University in early 2011 with two initial groups of 35 and 25 volunteers. [10] Volunteers were given sterile cotton swabs and were asked to insert the cotton swabs into their navels, to turn the cotton swab around three times and then return the cotton swab to the researchers in a vial [16] that contained a 0.5 ml 10% phosphate saline buffer. [10] Researchers at North Carolina State University, led by Jiri Hulcr, [17] then grew the samples in a culture until the bacterial colonies were large enough to be photographed and then these pictures were posted on the Belly Button Biodiversity Project's website (volunteers were given sample numbers so that they could view their own samples online). [16] These samples then were analyzed using 16S rDNA libraries so that strains that did not grow well in cultures could be identified. [10]
The researchers at North Carolina State University discovered that while it was difficult to predict every strain of bacteria in the microbiome of the navel that they could predict which strains would be prevalent and which strains of bacteria would be quite rare in the microbiome. [10] It was found that the navel microbiomes only contained a few prevalent types of bacteria (Staphylococcus, Corynebacterium, Actinobacteria, Clostridiales, and Bacilli) and many different types of rare bacteria. [10] Other types of rare organisms were discovered inside the navels of the volunteers including three types of Archaea, two of which were found in one volunteer who claimed not to have bathed or showered for many years. [10]
Staphylococcus and Corynebacterium were among the most common types of bacteria found in the navels of this project's volunteers and these types of bacteria have been found to be the most common types of bacteria found on the human skin in larger studies of the skin microbiome [18] (of which the Belly Button Biodiversity Project is a part). [10] (In these larger studies it has been found that females generally have more Staphylococcus living in their skin microbiomes [18] (usually Staphylococcus epidermidis) [16] and that men have more Corynebacterium living in their skin microbiomes.) [18]
According to the Belly Button Biodiversity Project [10] at North Carolina State University, there are two types of microorganisms found in the navel and surrounding areas. Transient bacteria (bacteria that does not reproduce) [12] forms the majority of the organisms found in the navel, and an estimated 1400 various strains were found in 95% of participants of the study. [19]
The Belly Button Biodiversity Project is ongoing and has now taken swabs from over 500 people. [10] The project was designed with the aim of countering that misconception that bacteria are always harmful to humans [20] and that humans are at war with bacteria. [21] In actuality, most strains of bacteria are harmless [13] if not beneficial for the human body. [22] Another of the project's goals is to foster public interest in microbiology. [17] Working in concert with the Human Microbiome Project, the Belly Button Biodiversity Project also studies the connections between human microbiomes and the factors of age, sex, ethnicity, location [17] and overall health. [23]
Skin microflora can be commensals, mutualistic or pathogens. Often they can be all three depending upon the strength of the person's immune system. [3] Research upon the immune system in the gut and lungs has shown that microflora aids immunity development: however such research has only started upon whether this is the case with the skin. [3] Pseudomonas aeruginosa is an example of a mutualistic bacterium that can turn into a pathogen and cause disease: if it gains entry into the circulatory system it can result in infections in bone, joint, gastrointestinal, and respiratory systems. It can also cause dermatitis. However, P. aeruginosa produces antimicrobial substances such as pseudomonic acid (that are exploited commercially such as Mupirocin). This works against staphylococcal and streptococcal infections. P. aeruginosa also produces substances that inhibit the growth of fungus species such as Candida krusei , Candida albicans , Torulopsis glabrata , Saccharomyces cerevisiae and Aspergillus fumigatus . [24] It can also inhibit the growth of Helicobacter pylori . [25] So important is its antimicrobial actions that it has been noted that "removing P. aeruginosa from the skin, through use of oral or topical antibiotics, may inversely allow for aberrant yeast colonization and infection." [3]
Another aspect of bacteria is the generation of body odor. Sweat is odorless however several bacteria may consume it and create byproducts which may be considered putrid by humans (as in contrast to flies, for example, that may find them attractive/appealing). Several examples are:
The skin creates antimicrobial peptides such as cathelicidins that control the proliferation of skin microbes. Cathelicidins not only reduce microbe numbers directly but also cause the secretion of cytokine release which induces inflammation, angiogenesis, and reepithelialization. Conditions such as atopic dermatitis have been linked to the suppression in cathelicidin production. [29] In rosacea abnormal processing of cathelicidin cause inflammation. Psoriasis has been linked to self-DNA created from cathelicidin peptides that causes autoinflammation. A major factor controlling cathelicidin is vitamin D3. [30]
The superficial layers of the skin are naturally acidic (pH 4–4.5) due to lactic acid in sweat and produced by skin bacteria. [31] At this pH mutualistic flora such as Staphylococci , Micrococci , Corynebacterium and Propionibacteria grow but not transient bacteria such as Gram-negative bacteria like Escherichia and Pseudomonas or Gram positive ones such as Staphylococcus aureus . [31] Another factor affecting the growth of pathological bacteria is that the antimicrobial substances secreted by the skin are enhanced in acidic conditions. [31] In alkaline conditions, bacteria cease to be attached to the skin and are more readily shed. It has been observed that the skin also swells under alkaline conditions and opens up allowing bacterial movement to the surface. [31]
If activated, the immune system in the skin produces cell-mediated immunity against microbes such as dermatophytes (skin fungi). [32] One reaction is to increase stratum corneum turnover and so shed the fungus from the skin surface. Skin fungi such as Trichophyton rubrum have evolved to create substances that limit the immune response to them. [32] The shedding of skin is a general means to control the buildup of flora upon the skin surface. [33]
Microorganisms play a role in noninfectious skin diseases such as atopic dermatitis, [34] rosacea, psoriasis, [35] and acne [36] Damaged skin can cause nonpathogenic bacteria to become pathogenic. [37] The diversity of species on the skin is related to later development of dermatitis. [38]
Acne vulgaris is a common skin condition characterised by excessive sebum production by the pilosebaceous unit and inflammation of the skin. [39] Affected areas are typically colonised by Propionibacterium acnes ; a member of the commensal microbiota even in those without acne. [40] High populations of P. acnes are linked to acne vulgaris although only certain strains are strongly associated with acne while others with healthy skin. The relative population of P. acnes is similar between those with acne and those without. [39] [40]
Current treatment includes topical and systemic antibacterial drugs which result in decreased P. acnes colonisation and/or activity. [41] Potential probiotic treatment includes the use of Staphylococcus epidermidis to inhibit P. acnes growth. S. epidermidis produces succinic acid which has been shown to inhibit P. acnes growth. [42] Lactobacillus plantarum has also been shown to act as an anti-inflammatory and improve antimicrobial properties of the skin when applied topically. It was also shown to be effective in reducing acne lesion size. [43]
Individuals with atopic dermatitis have shown an increase in populations of Staphylococcus aureus in both lesional and nonlesional skin. [40] Atopic dermatitis flares are associated with low bacterial diversity due to colonisation by S. aureus and following standard treatment, bacterial diversity has been seen to increase.[ citation needed ]
Current treatments include combinations of topical or systemic antibiotics, corticosteroids, and diluted bleach baths. [44] Potential probiotic treatments include using the commensal skin bacteria, S. epidermidis, to inhibit S. aureus growth. During atopic dermatitis flares, population levels of S. epidermidis has been shown to increase as an attempt to control S. aureus populations. [40] [44]
Low gut microbial diversity in babies has been associated with an increased risk of atopic dermatitis. [45] Infants with atopic eczema have low levels of Bacteroides and high levels of Bacillota. Bacteroides have anti-inflammatory properties which are essential against dermatitis. [45] (See gut microbiota)
Psoriasis vulgaris typically affects drier skin sites such as elbows and knees. Dry areas of the skin tend to have high microbial diversity and fewer populations than sebaceous sites. [41] A study using swab sampling techniques show areas rich in Bacillota (mainly Streptococcus and Staphylococcus ) and Actinomycetota (mainly Corynebacterium and Propionibacterium ) are associated with psoriasis. [46] While another study using biopsies associate increased levels of Bacillota and Actinomycetota with healthy skin. [47] However most studies show that individuals affected by psoriasis have a lower microbial diversity in the affected areas.
Treatments for psoriasis include topical agents, phototherapy, and systemic agents. [48] Current research on the skin microbiota's role in psoriasis is inconsistent therefore there are no potential probiotic treatments.
Rosacea is typically connected to sebaceous sites of the skin. The skin mite Demodex folliculorum produce lipases that allow them to use sebum as a source of food therefore they have a high affinity for sebaceous skin sites. Although it is a part of the commensal skin microbiota, patients affected with rosacea show an increase in D. folliculorum compared to healthy individuals, suggesting pathogenicity. [49]
Bacillus oleronius , a Demodex associated microbe, is not typically found in the commensal skin microbiota but initiates inflammatory pathways whose starting mechanism is similar to rosacea patients. [40] Populations of S. epidermidis have also been isolated from pustules of rosacea patients. However it is possible that they were moved by Demodex to areas that favour growth as Demodex has shown to transport bacteria around the face. [50]
Current treatments include topical and oral antibiotics and laser therapy. [51] As current research has yet to show a clear mechanism for Demodex influence in rosacea, there are no potential probiotic treatments.
Skin microbes are a potential source of infected medical devices such as catheters. [52]
The human skin is host to numerous bacterial and fungal species, some of which are known to be harmful, some known to be beneficial and the vast majority unresearched. The use of bactericidal and fungicidal soaps will inevitably lead to bacterial and fungal populations which are resistant to the chemicals employed (see drug resistance).
Skin flora do not readily pass between people: 30 seconds of moderate friction and dry hand contact results in a transfer of only 0.07% of natural hand flora from naked with a greater percentage from gloves. [53]
The most effective (60–80% reduction) antimicrobial washing is with ethanol, isopropanol, and n-propanol. Viruses are most affected by high (95%) concentrations of ethanol, while bacteria are more affected by n-propanol. [54]
Unmedicated soaps are not very effective as illustrated by the following data. Health care workers washed their hands once in nonmedicated liquid soap for 30 seconds. The students/technicians for 20 times. [55]
group and hand skin condition | unwashed | washed |
---|---|---|
Health care workers healthy | 3.47 | 3.15 |
Health care workers damaged | 3.33 | 3.29 |
Students/technicians healthy | 4.39 | 3.54 |
Students/technicians damaged | 4.58 | 4.43 |
An important use of hand washing is to prevent the transmission of antibiotic resistant skin flora that cause hospital-acquired infections such as methicillin-resistant Staphylococcus aureus. While such flora have become antibiotic resistant due to antibiotics there is no evidence that recommended antiseptics or disinfectants selects for antibiotic-resistant organisms when used in hand washing. [56] However, many strains of organisms are resistant to some of the substances used in antibacterial soaps such as triclosan. [56]
One study of bar soaps in dentist clinics found they all had their own flora and on average from two to five different genera of microorganisms with those used most more likely to have more species varieties. [57] Another study of bar soaps in public toilets found even more flora. [58] Another study found that very dry soaps are not colonized while all are that rest in pools of water. [59] However, one experiment using soaps inoculated with Pseudomonas aeruginosa and Escherichia coli that washing with inoculated bar soap did not transmit these bacteria to participants hands. [60]
Washing skin repeatedly can damage the protective external layer and cause transepidermal loss of water. This can be seen in roughness characterized by scaling and dryness, itchiness, dermatitis provoked by microorganisms and allergens penetrating the corneal layer and redness. Wearing gloves can cause further problems since it produces a humid environment favoring the growth of microbes and also contains irritants such as latex and talcum powder. [61]
Hand washing can damage skin because the stratum corneum top layer of skin consists of 15 to 20 layers of keratin disks, corneocytes, each of which is each surrounded by a thin film of skin lipids which can be removed by alcohols and detergents. [62]
Damaged skin defined by extensive cracking of skin surface, widespread reddening or occasional bleeding has also been found to be more frequently colonized by Staphylococcus hominis and these were more likely to be methicillin resistant. [61] Though not related to greater antibiotic resistance, damaged skin was also more like to be colonized by Staphylococcus aureus , gram-negative bacteria, Enterococci and Candida . [61]
The skin flora is different from that of the gut which is predominantly Bacillota and Bacteroidota. [63] There is also low level of variation between people that is not found in gut studies. [5] Both gut and skin flora however lack the diversity found in soil flora. [1]
The human microbiome is the aggregate of all microbiota that reside on or within human tissues and biofluids along with the corresponding anatomical sites in which they reside, including the gastrointestinal tract, skin, mammary glands, seminal fluid, uterus, ovarian follicles, lung, saliva, oral mucosa, conjunctiva, and the biliary tract. Types of human microbiota include bacteria, archaea, fungi, protists, and viruses. Though micro-animals can also live on the human body, they are typically excluded from this definition. In the context of genomics, the term human microbiome is sometimes used to refer to the collective genomes of resident microorganisms; however, the term human metagenome has the same meaning.
Dandruff is a skin condition that mainly affects the scalp. Symptoms include flaking and sometimes mild itchiness. It can result in social or self-esteem problems. A more severe form of the condition, which includes inflammation of the skin, is known as seborrhoeic dermatitis.
Cutibacterium acnes is the relatively slow-growing, typically aerotolerant anaerobic, gram-positive bacterium (rod) linked to the skin condition of acne; it can also cause chronic blepharitis and endophthalmitis, the latter particularly following intraocular surgery. Its genome has been sequenced and a study has shown several genes can generate enzymes for degrading skin and proteins that may be immunogenic.
Blepharitis, sometimes known as granulated eyelids, is one of the most common ocular conditions characterized by inflammation, scaling, reddening, and crusting of the eyelid. This condition may also cause swelling, burning, itching, or a grainy sensation when introducing foreign objects or substances to the eye. Although blepharitis by itself is not sight-threatening, it can lead to permanent alterations of the eyelid margin. The primary cause is bacteria and inflammation from congested meibomian oil glands at the base of each eyelash. Other conditions may give rise to blepharitis, whether they be infectious or noninfectious, including, but not limited to, bacterial infections or allergies.
Demodex is a genus of tiny mites that live in or near hair follicles of mammals. Around 65 species of Demodex are known. Two species live on humans: Demodex folliculorum and Demodex brevis, both frequently referred to as eyelash mites, alternatively face mites or skin mites.
Staphylococcus caprae is a Gram-positive, coccus bacteria and a member of the genus Staphylococcus. S. caprae is coagulase-negative. It was originally isolated from goats, but members of this species have also been isolated from human samples.
Staphylococcus epidermidis is a Gram-positive bacterium, and one of over 40 species belonging to the genus Staphylococcus. It is part of the normal human microbiota, typically the skin microbiota, and less commonly the mucosal microbiota and also found in marine sponges. It is a facultative anaerobic bacteria. Although S. epidermidis is not usually pathogenic, patients with compromised immune systems are at risk of developing infection. These infections are generally hospital-acquired. S. epidermidis is a particular concern for people with catheters or other surgical implants because it is known to form biofilms that grow on these devices. Being part of the normal skin microbiota, S. epidermidis is a frequent contaminant of specimens sent to the diagnostic laboratory.
Gut microbiota, gut microbiome, or gut flora are the microorganisms, including bacteria, archaea, fungi, and viruses, that live in the digestive tracts of animals. The gastrointestinal metagenome is the aggregate of all the genomes of the gut microbiota. The gut is the main location of the human microbiome. The gut microbiota has broad impacts, including effects on colonization, resistance to pathogens, maintaining the intestinal epithelium, metabolizing dietary and pharmaceutical compounds, controlling immune function, and even behavior through the gut–brain axis.
Dysbiosis is characterized by a disruption to the microbiome resulting in an imbalance in the microbiota, changes in their functional composition and metabolic activities, or a shift in their local distribution. For example, a part of the human microbiota such as the skin flora, gut flora, or vaginal flora, can become deranged, with normally dominating species underrepresented and normally outcompeted or contained species increasing to fill the void. Similar to the human gut microbiome, diverse microbes colonize the plant rhizosphere, and dysbiosis in the rhizosphere, can negatively impact plant health. Dysbiosis is most commonly reported as a condition in the gastrointestinal tract or plant rhizosphere.
Vaginal flora, vaginal microbiota or vaginal microbiome are the microorganisms that colonize the vagina. They were discovered by the German gynecologist Albert Döderlein in 1892 and are part of the overall human flora. The amount and type of bacteria present have significant implications for an individual's overall health. The primary colonizing bacteria of a healthy individual are of the genus Lactobacillus, such as L. crispatus, and the lactic acid they produce is thought to protect against infection by pathogenic species.
Oral microbiology is the study of the microorganisms (microbiota) of the oral cavity and their interactions between oral microorganisms or with the host. The environment present in the human mouth is suited to the growth of characteristic microorganisms found there. It provides a source of water and nutrients, as well as a moderate temperature. Resident microbes of the mouth adhere to the teeth and gums to resist mechanical flushing from the mouth to stomach where acid-sensitive microbes are destroyed by hydrochloric acid.
A staphylococcal infection or staph infection is an infection caused by members of the Staphylococcus genus of bacteria.
Nadifloxacin is a topical fluoroquinolone antibiotic for the treatment of acne vulgaris. It is also used to treat bacterial skin infections.
Staphylococcus capitis is a coagulase-negative species (CoNS) of Staphylococcus. It is part of the normal flora of the skin of the human scalp, face, neck, scrotum, and ears and has been associated with prosthetic valve endocarditis, but is rarely associated with native valve infection.
Staphylococcus is a genus of Gram-positive bacteria in the family Staphylococcaceae from the order Bacillales. Under the microscope, they appear spherical (cocci), and form in grape-like clusters. Staphylococcus species are facultative anaerobic organisms.
The lung microbiota is the pulmonary microbial community consisting of a complex variety of microorganisms found in the lower respiratory tract particularly on the mucous layer and the epithelial surfaces. These microorganisms include bacteria, fungi, viruses and bacteriophages. The bacterial part of the microbiota has been more closely studied. It consists of a core of nine genera: Prevotella, Sphingomonas, Pseudomonas, Acinetobacter, Fusobacterium, Megasphaera, Veillonella, Staphylococcus, and Streptococcus. They are aerobes as well as anaerobes and aerotolerant bacteria. The microbial communities are highly variable in particular individuals and compose of about 140 distinct families. The bronchial tree for instance contains a mean of 2000 bacterial genomes per cm2 surface. The harmful or potentially harmful bacteria are also detected routinely in respiratory specimens. The most significant are Moraxella catarrhalis, Haemophilus influenzae, and Streptococcus pneumoniae. They are known to cause respiratory disorders under particular conditions namely if the human immune system is impaired. The mechanism by which they persist in the lower airways in healthy individuals is unknown.
Skin immunity is a property of skin that allows it to resist infections from pathogens. In addition to providing a passive physical barrier against infection, the skin also contains elements of the innate and adaptive immune systems which allows it to actively fight infections. Hence the skin provides defense in depth against infection.
The Human Microbiome Project (HMP), completed in 2012, laid the foundation for further investigation into the role the microbiome plays in overall health and disease. One area of particular interest is the role which delivery mode plays in the development of the infant/neonate microbiome and what potential implications this may have long term. It has been found that infants born via vaginal delivery have microbiomes closely mirroring that of the mother's vaginal microbiome, whereas those born via cesarean section tend to resemble that of the mother's skin. One notable study from 2010 illustrated an abundance of Lactobacillus and other typical vaginal genera in stool samples of infants born via vaginal delivery and an abundance of Staphylococcus and Corynebacterium, commonly found on the skin surfaces, in stool samples of infants born via cesarean section. From these discoveries came the concept of vaginal seeding, also known as microbirthing, which is a procedure whereby vaginal fluids are applied to a new-born child delivered by caesarean section. The idea of vaginal seeding was explored in 2015 after Maria Gloria Dominguez-Bello discovered that birth by caesarean section significantly altered the newborn child's microbiome compared to that of natural birth. The purpose of the technique is to recreate the natural transfer of bacteria that the baby gets during a vaginal birth. It involves placing swabs in the mother's vagina, and then wiping them onto the baby's face, mouth, eyes and skin. Due to the long-drawn nature of studying the impact of vaginal seeding, there are a limited number of studies available that support or refute its use. The evidence suggests that applying microbes from the mother's vaginal canal to the baby after cesarean section may aid in the partial restoration of the infant's natural gut microbiome with an increased likelihood of pathogenic infection to the child via vertical transmission.
The human milk microbiota, also known as human milk probiotics (HMP), encompasses the microbiota–the community of microorganisms–present within the human mammary glands and breast milk. Contrary to the traditional belief that human breast milk is sterile, advancements in both microbial culture and culture-independent methods have confirmed that human milk harbors diverse communities of bacteria. These communities are distinct in composition from other microbial populations found within the human body which constitute the human microbiome.