Streptococcus pyogenes

Last updated

Streptococcus pyogenes
Streptococcus Pyogenes (Group A Strep) (52602981880).jpg
False-color scanning electron micrograph of chain of Streptococcus pyogenes bacteria (yellow)
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Bacteria
Phylum: Bacillota
Class: Bacilli
Order: Lactobacillales
Family: Streptococcaceae
Genus: Streptococcus
Species:
S. pyogenes
Binomial name
Streptococcus pyogenes
Rosenbach 1884

Streptococcus pyogenes is a species of Gram-positive, aerotolerant bacteria in the genus Streptococcus . These bacteria are extracellular, and made up of non-motile and non-sporing cocci (round cells) that tend to link in chains. They are clinically important for humans, as they are an infrequent, but usually pathogenic, part of the skin microbiota that can cause Group A streptococcal infection. S. pyogenes is the predominant species harboring the Lancefield group A antigen, and is often called group A Streptococcus (GAS). However, both Streptococcus dysgalactiae and the Streptococcus anginosus group can possess group A antigen as well. Group A streptococci, when grown on blood agar, typically produce small (2–3 mm) zones of beta-hemolysis, a complete destruction of red blood cells. The name group A (beta-hemolytic) Streptococcus is thus also used. [1]

Contents

The species name is derived from Greek words meaning 'a chain' (streptos) of berries (coccus [Latinized from kokkos]) and pus (pyo)-forming (genes), since a number of infections caused by the bacterium produce pus. The main criterion for differentiation between Staphylococcus spp. and Streptococcus spp. is the catalase test. Staphylococci are catalase positive whereas streptococci are catalase-negative. [2] S. pyogenes can be cultured on fresh blood agar plates. The PYR test allows for the differentiation of Streptococcus pyogenes from other morphologically similar beta-hemolytic streptococci (including S. dysgalactiae subsp. esquismilis) as S. pyogenes will produce a positive test result. [3]

An estimated 700 million GAS infections occur worldwide each year. While the overall mortality rate for these infections is less than 0.1%, over 650,000 of the cases are severe and invasive, and these cases have a mortality rate of 25%. [4] Early recognition and treatment are critical; diagnostic failure can result in sepsis and death. [5] [6] S. pyogenes is clinically and historically significant as the cause of scarlet fever, which results from exposure to the species' exotoxin. [7]

Epidemiology

Chains of S. pyogenes bacteria (orange) at 900x magnification Streptococcus pyogenes.jpg
Chains of S. pyogenes bacteria (orange) at 900× magnification
Gram stain of Streptococcus pyogenes. Gram stain of Streptococcus pyogenes.jpg
Gram stain of Streptococcus pyogenes.

Unlike most bacterial pathogens, S. pyogenes only infects humans. Thus, zoonotic transmission from an animal (or animal products) to a human is rare. [8]

S. pyogenes typically colonizes the throat, genital mucosa, rectum, and skin. Of healthy adults, 1% to 5% have throat, vaginal, or rectal carriage, with children being more common carriers. Most frequently, transmission from one person to another occurs due to inhalation of respiratory droplets, produced by sneezing and coughing from an infected person. Skin contact, contact with objects harboring the bacterium, and consumption of contaminated food are possible but uncommon modes of transmission. Streptococcal pharyngitis occurs most frequently in late winter to early spring in most countries as indoor spaces are used more often and thus more crowded. Disease cases are the lowest during autumn. [9]

Maternal S. pyogenes infection usually happens in late pregnancy, at more than 30 weeks of gestation to four weeks postpartum. Maternal infections account for 2 to 4% of all clinically diagnosed S. pyogenes infections. [9] The risk of sepsis is relatively high compared to other bacterial infections acquired during pregnancy, and S. pyogenes is a leading cause of septic shock and death in pregnant and postpartum women. [10]

Bacteriology

False-color scanning electron microscope image of Streptococcus pyogenes (orange) during phagocytosis with a human neutrophil (blue) Streptococcus Pyogenes (Group A Strep) (52606801786).jpg
False-color scanning electron microscope image of Streptococcus pyogenes (orange) during phagocytosis with a human neutrophil (blue)

Serotyping

In 1928, Rebecca Lancefield published a method for serotyping S. pyogenes based on its cell-wall polysaccharide, [11] a virulence factor displayed on its surface. [12] Later, in 1946, Lancefield described the serologic classification of S. pyogenes isolates based on components of their surface pili (known as the T-antigen) [13] which are used by bacteria to attach to host cells. [14] As of 2016, a total of 120 M proteins are identified. These M proteins are encoded by 234 types emm gene with greater than 1,200 alleles. [9]

Lysogeny

All strains of S. pyogenes are polylysogenized, in that they carry one or more bacteriophage on their genomes. [15] Some of the 'phages may be defective, but in some cases active 'phage may compensate for defects in others. [16] In general, the genome of S. pyogenes strains isolated during disease are >90% identical, they differ by the 'phage they carry. [17]

Virulence factors

S. pyogenes has several virulence factors that enable it to attach to host tissues, evade the immune response, and spread by penetrating host tissue layers. [18] A carbohydrate-based bacterial capsule composed of hyaluronic acid surrounds the bacterium, protecting it from phagocytosis by neutrophils. [2] In addition, the capsule and several factors embedded in the cell wall, including M protein, lipoteichoic acid, and protein F (SfbI) facilitate attachment to various host cells. [19] M protein also inhibits opsonization by the alternative complement pathway by binding to host complement regulators. The M protein found on some serotypes is also able to prevent opsonization by binding to fibrinogen. [2] However, the M protein is also the weakest point in this pathogen's defense, as antibodies produced by the immune system against M protein target the bacteria for engulfment by phagocytes. M proteins are unique to each strain, and identification can be used clinically to confirm the strain causing an infection. [20]

NameDescription
Streptolysin OAn exotoxin, one of the bases of the organism's beta-hemolytic property, streptolysin O causes an immune response and detection of antibodies to it; antistreptolysin O (ASO) can be clinically used to confirm a recent infection. It is damaged by oxygen.
Streptolysin SA cardiotoxic exotoxin, another beta-hemolytic component, not immunogenic and O2 stable: A potent cell poison affecting many types of cell including neutrophils, platelets, and subcellular organelles.
Streptococcal pyrogenic exotoxin A (SpeA) Superantigens secreted by many strains of S. pyogenes: This pyrogenic exotoxin is responsible for the rash of scarlet fever and many of the symptoms of streptococcal toxic shock syndrome, also known as toxic shock like syndrome (TSLS).
Streptococcal pyrogenic exotoxin C (SpeC)
Streptococcal pyrogenic exotoxin B (SpeB)A cysteine protease and the predominant secreted protein. Multiple actions, including degrading the extracellular matrix, cytokines, complement components, and immunoglobulins. Also called streptopain. [21]
Streptokinase Enzymatically activates plasminogen, a proteolytic enzyme, into plasmin, which in turn digests fibrin and other proteins
Hyaluronidase Hyaluronidase is widely assumed to facilitate the spread of the bacteria through tissues by breaking down hyaluronic acid, an important component of connective tissue. However, very few isolates of S. pyogenes are capable of secreting active hyaluronidase due to mutations in the gene that encodes the enzyme. Moreover, the few isolates capable of secreting hyaluronidase do not appear to need it to spread through tissues or to cause skin lesions. [22] Thus, the true role of hyaluronidase in pathogenesis, if any, remains unknown.
StreptodornaseMost strains of S. pyogenes secrete up to four different DNases, which are sometimes called streptodornase. The DNases protect the bacteria from being trapped in neutrophil extracellular traps (NETs) by digesting the NETs' web of DNA, to which are bound neutrophil serine proteases that can kill the bacteria. [23]
C5a peptidase C5a peptidase cleaves a potent neutrophil chemotaxin called C5a, which is produced by the complement system. [24] C5a peptidase is necessary to minimize the influx of neutrophils early in infection as the bacteria are attempting to colonize the host's tissue. [25] C5a peptidase, although required to degrade the neutrophil chemotaxin C5a in the early stages of infection, is not required for S. pyogenes to prevent the influx of neutrophils as the bacteria spread through the fascia. [26]
Streptococcal chemokine proteaseThe affected tissue of patients with severe cases of necrotizing fasciitis are devoid of neutrophils. [27] The serine protease ScpC, which is released by S. pyogenes, is responsible for preventing the migration of neutrophils to the spreading infection. ScpC degrades the chemokine IL-8, which would otherwise attract neutrophils to the site of infection. [25] [26]

Genome

The genomes of different strains were sequenced (genome size is 1.8–1.9 Mbp) [28] encoding about 1700-1900 proteins (1700 in strain NZ131, [29] [30] 1865 in strain MGAS5005 [31] [32] ). Complete genome sequences of the type strain of S. pyogenes (NCTC 8198T = CCUG 4207T) are available in DNA Data Bank of Japan, European Nucleotide Archive, and GenBank under the accession numbers LN831034 and CP028841. [33]

Biofilm formation

Biofilms are a way for S. pyogenes, as well as other bacterial cells, to communicate with each other. In the biofilm gene expression for multiple purposes (such as defending against the host immune system) is controlled via quorum sensing. [34] One of the biofilm forming pathways in GAS is the Rgg2/3 pathway. It regulates SHP's (short hydrophobic peptides) that are quorum sensing pheromones a.k.a. autoinducers. The SHP's are translated to an immature form of the pheromone and must undergo processing, first by a metalloprotease enzyme inside the cell and then in the extracellular space, to reach their mature active form. The mode of transportation out of the cell and the extracellular processing factor(s) are still unknown. The mature SHP pheromone can then be taken into nearby cells and the cell it originated from via a transmembrane protein, oligopeptide permease. [34] In the cytosol the pheromones have two functions in the Rgg2/3 pathway. Firstly, they inhibit the activity of Rgg3 which is a transcriptional regulator repressing SHP production. Secondly, they bind another transcriptional regulator, Rgg2, that increases the production of SHP's, having an antagonistic effect to Rgg3. SHP's activating their own transcriptional activator creates a positive feedback loop, which is common for the production for quorum sensing peptides. It enables the rapid production of the pheromones in large quantities. The production of SHP's increases biofilm biogenesis. [34] It has been suggested that GAS switches between biofilm formation and degradation by utilizing pathways with opposing effects. Whilst Rgg2/3 pathway increases biofilm, the RopB pathway disrupts it. RopB is another Rgg-like protein (Rgg1) that directly activates SpeB (Streptococcal pyrogenic exotoxin B), a cysteine protease that acts as a virulence factor. In the absence of this pathway, biofilm formation is enhanced, possibly due to the lack of the protease degrading pheromones or other Rgg2/3 pathway counteracting effects. [34]

Disease

S. pyogenes is the cause of many human diseases, ranging from mild superficial skin infections to life-threatening systemic diseases. [2] The most frequent manifestations of disease are commonly known as scarlet fever. Infections typically begin in the throat or skin. The most striking sign is a strawberry-like rash. Examples of mild S. pyogenes infections include pharyngitis (strep throat) and localized skin infection (impetigo). Erysipelas and cellulitis are characterized by multiplication and lateral spread of S. pyogenes in deep layers of the skin. S. pyogenes invasion and multiplication in the fascia beneath the skin can lead to necrotizing fasciitis, a life-threatening surgical emergency. [35] [36] The bacterium is also an important cause of infection in newborns, who are susceptible to some forms of the infection that are rarely seen in adults, including meningitis. [37] [38]

Like many pathogenic bacteria, S. pyogenes may colonize a healthy person's respiratory system without causing disease. It is commonly found in some populations as part of the mixed microbiome of the upper respiratory tract. Individuals who have the bacterium in their bodies but no signs of disease are known as asymptomatic carriers. The bacteria may start to cause disease when the host's immune system weakens, such as during a viral respiratory infection, which may lead to S. pyogenes superinfection. [39] [40]

S. pyogenes infections are commonly associated with the release of one or more bacterial toxins. The release of endotoxins from throat infections has been linked to the development of scarlet fever. [7] Other toxins produced by S. pyogenes may lead to streptococcal toxic shock syndrome, a life-threatening emergency. [2]

S. pyogenes can also cause disease in the form of post-infectious "non-pyogenic" (not associated with local bacterial multiplication and pus formation) syndromes. These autoimmune-mediated complications follow a small percentage of infections and include rheumatic fever and acute post-infectious glomerulonephritis. Both conditions appear several weeks following the initial streptococcal infection. Rheumatic fever is characterized by inflammation of the joints and/or heart following an episode of streptococcal pharyngitis. Acute glomerulonephritis, inflammation of the renal glomerulus, can follow streptococcal pharyngitis or skin infection.[ citation needed ]

This bacterium remains acutely sensitive to penicillin. Failure of treatment with penicillin is generally attributed to other local commensal organisms producing β-lactamase, or failure to achieve adequate tissue levels in the pharynx. Certain strains have developed resistance to macrolides, tetracyclines, and clindamycin. [41]

Vaccine

There is a polyvalent inactivated vaccine against several types of Streptococcus including S. pyogenes called " vacuna antipiogena polivalente BIOL" it is recommended an administration in a series of 5 weeks. Two weekly applications are made at intervals of 2 to 4 days. The vaccine is produced by the Instituto Biológico Argentino. [42]

There is another potential vaccine being developed; the vaccine candidate peptide is called StreptInCor. [43]

Applications

Bionanotechnology

Many S. pyogenes proteins have unique properties, which have been harnessed in recent years to produce a highly specific "superglue" [44] [45] and a route to enhance the effectiveness of antibody therapy. [46]

Genome editing

The CRISPR system from this organism [47] that is used to recognize and destroy DNA from invading viruses, thus stopping the infection, was appropriated in 2012 for use as a genome-editing tool that could potentially alter any piece of DNA and later RNA. [48]

See also

Related Research Articles

<i>Streptococcus</i> Genus of bacteria

Streptococcus is a genus of gram-positive coccus or spherical bacteria that belongs to the family Streptococcaceae, within the order Lactobacillales, in the phylum Bacillota. Cell division in streptococci occurs along a single axis, so as they grow, they tend to form pairs or chains that may appear bent or twisted. This differs from staphylococci, which divide along multiple axes, thereby generating irregular, grape-like clusters of cells. Most streptococci are oxidase-negative and catalase-negative, and many are facultative anaerobes.

<span class="mw-page-title-main">Group A streptococcal infection</span> Medical condition

Group A streptococcal infections are a number of infections with Streptococcus pyogenes, a group A streptococcus (GAS). S. pyogenes is a species of beta-hemolytic Gram-positive bacteria that is responsible for a wide range of infections that are mostly common and fairly mild. If the bacteria enter the bloodstream an infection can become severe and life-threatening, and is called an invasive GAS (iGAS).

<span class="mw-page-title-main">Scarlet fever</span> Infectious disease caused by Streptococcus pyogenes

Scarlet fever, also known as scarlatina, is an infectious disease caused by Streptococcus pyogenes, a Group A streptococcus (GAS). It most commonly affects children between five and 15 years of age. The signs and symptoms include a sore throat, fever, headache, swollen lymph nodes, and a characteristic rash. The face is flushed and the rash is red and blanching. It typically feels like sandpaper and the tongue may be red and bumpy. The rash occurs as a result of capillary damage by exotoxins produced by S.pyogenes. On darker-pigmented skin the rash may be hard to discern.

<span class="mw-page-title-main">Streptococcal pharyngitis</span> Medical condition

Streptococcal pharyngitis, also known as streptococcal sore throat, is pharyngitis caused by Streptococcus pyogenes, a gram-positive, group A streptococcus. Common symptoms include fever, sore throat, red tonsils, and enlarged lymph nodes in the front of the neck. A headache and nausea or vomiting may also occur. Some develop a sandpaper-like rash which is known as scarlet fever. Symptoms typically begin one to three days after exposure and last seven to ten days.

<span class="mw-page-title-main">Rheumatic fever</span> Post-streptococcal inflammatory disease

Rheumatic fever (RF) is an inflammatory disease that can involve the heart, joints, skin, and brain. The disease typically develops two to four weeks after a streptococcal throat infection. Signs and symptoms include fever, multiple painful joints, involuntary muscle movements, and occasionally a characteristic non-itchy rash known as erythema marginatum. The heart is involved in about half of the cases. Damage to the heart valves, known as rheumatic heart disease (RHD), usually occurs after repeated attacks but can sometimes occur after one. The damaged valves may result in heart failure, atrial fibrillation and infection of the valves.

<span class="mw-page-title-main">Viridans streptococci</span> Species of bacterium

The viridans streptococci are a large group of commensal streptococcal Gram-positive bacteria species that are α-hemolytic, producing a green coloration on blood agar plates, although some species in this group are actually γ-hemolytic, meaning they produce no change on blood agar. The pseudo-taxonomic term "Streptococcus viridans" is often used to refer to this group of species, but writers who do not like to use the pseudotaxonomic term prefer the terms viridans streptococci, viridans group streptococci (VGS), or viridans streptococcal species.

<i>Streptococcus mutans</i> Species of bacterium

Streptococcus mutans is a facultatively anaerobic, gram-positive coccus commonly found in the human oral cavity and is a significant contributor to tooth decay. It is part of the "streptococci", an informal general name for all species in the genus Streptococcus. The microbe was first described by James Kilian Clarke in 1924.

<span class="mw-page-title-main">Rebecca Lancefield</span> 20th-century American microbiologist

Rebecca Craighill Lancefield was a prominent American microbiologist. She joined the Rockefeller Institute for Medical Research in New York in 1918, and was associated with that institute throughout her long and outstanding career. Her bibliography comprises more than 50 publications published over 60 years.

<i>Arcanobacterium haemolyticum</i> Species of bacterium

Arcanobacterium haemolyticum is a species of bacteria classified as a gram-positive bacillus. It is catalase-negative, facultative anaerobic, beta-hemolytic, and not motile. It has been known to cause head and neck infections, pharyngitis, and sinusitis.

<span class="mw-page-title-main">Rapid strep test</span> Test for strep throat

The rapid strep test (RST) is a rapid antigen detection test (RADT) that is widely used in clinics to assist in the diagnosis of bacterial pharyngitis caused by group A streptococci (GAS), sometimes termed strep throat. There are currently several types of rapid strep test in use, each employing a distinct technology. However, they all work by detecting the presence of GAS in the throat of a person by responding to GAS-specific antigens on a throat swab.

Streptolysins are two hemolytic exotoxins from Streptococcus pyogenes. Types include streptolysin O, which is oxygen-labile, and streptolysin S, which is oxygen-stable.

M protein is a virulence factor that can be produced by certain species of Streptococcus.

Streptococcus constellatus is a species of Streptococcus bacteria that is part of the normal flora in the oral cavity, urogenital region, and intestinal tract. However, it can frequently cause purulent infections in other parts of the body. DNA homology studies and 16S rRNA sequence analysis demonstrate S. constellatus belongs to the Streptococcus anginosus group along with Streptococcus intermedius and Streptococcus anginosus.

<i>Streptococcus dysgalactiae</i> Species of bacterium

Streptococcus dysgalactiae is a gram positive, beta-haemolytic, coccal bacterium belonging to the family Streptococcaceae. It is capable of infecting both humans and animals, but is most frequently encountered as a commensal of the alimentary tract, genital tract, or less commonly, as a part of the skin flora. The clinical manifestations in human disease range from superficial skin-infections and tonsillitis, to severe necrotising fasciitis and bacteraemia. The incidence of invasive disease has been reported to be rising. Several different animal species are susceptible to infection by S. dysgalactiae, but bovine mastitis and infectious arthritis in lambs have been most frequently reported.

<span class="mw-page-title-main">Streptococcal intertrigo</span> Medical condition

Streptococcal intertrigo is a skin condition that is secondary to a streptococcal bacterial infection. It is often seen in infants and young children and can be characterized by a fiery-red color of the skin, foul odor with an absence of satellite lesions, and skin softening in the neck, armpits or folds of the groin. Newborn children and infants commonly develop intertrigo because of physical features such as deep skin folds, short neck, and flexed posture. Prompt diagnosis by a medical professional and treatment with topical and/or oral antibiotics can effectively relieve symptoms.

<i>Streptococcus iniae</i> Species of bacterium

Streptococcus iniae is a species of Gram-positive, sphere-shaped bacterium belonging to the genus Streptococcus. Since its isolation from an Amazon freshwater dolphin in the 1970s, S. iniae has emerged as a leading fish pathogen in aquaculture operations worldwide, resulting in over US$100M in annual losses. Since its discovery, S. iniae infections have been reported in at least 27 species of cultured or wild fish from around the world. Freshwater and saltwater fish including tilapia, red drum, hybrid striped bass, and rainbow trout are among those susceptible to infection by S. iniae. Infections in fish manifest as meningoencephalitis, skin lesions, and septicemia.

Perianal cellulitis, also known as perianitis or perianal streptococcal dermatitis, is a bacterial infection affecting the lower layers of the skin (cellulitis) around the anus. It presents as bright redness in the skin and can be accompanied by pain, difficulty defecating, itching, and bleeding. This disease is considered a complicated skin and soft tissue infection (cSSTI) because of the involvement of the deeper soft tissues.

<span class="mw-page-title-main">Streptococcal pyrogenic exotoxin</span>

Streptococcal pyrogenic exotoxins also known as erythrogenic toxins, are exotoxins secreted by strains of the bacterial species Streptococcus pyogenes. SpeA and speC are superantigens, which induce inflammation by nonspecifically activating T cells and stimulating the production of inflammatory cytokines. SpeB, the most abundant streptococcal extracellular protein, is a cysteine protease. Pyrogenic exotoxins are implicated as the causative agent of scarlet fever and streptococcal toxic shock syndrome. There is no consensus on the exact number of pyrogenic exotoxins. Serotypes A-C are the most extensively studied and recognized by all sources, but others note up to thirteen distinct types, categorizing speF through speM as additional superantigens. Erythrogenic toxins are known to damage the plasma membranes of blood capillaries under the skin and produce a red skin rash. Past studies have shown that multiple variants of erythrogenic toxins may be produced, depending on the strain of S. pyogenes in question. Some strains may not produce a detectable toxin at all. Bacteriophage T12 infection of S. pyogenes enables the production of speA, and increases virulence.

Bacteriophage T12 is a bacteriophage that infects Streptococcus pyogenes bacteria. It is a proposed species of the family Siphoviridae in the order Caudovirales also known as tailed viruses. It converts a harmless strain of bacteria into a virulent strain. It carries the speA gene which codes for erythrogenic toxin A. speA is also known as streptococcal pyogenic exotoxin A, scarlet fever toxin A, or even scarlatinal toxin. Note that the name of the gene "speA" is italicized; the name of the toxin "speA" is not italicized. Erythrogenic toxin A converts a harmless, non-virulent strain of Streptococcus pyogenes to a virulent strain through lysogeny, a life cycle which is characterized by the ability of the genome to become a part of the host cell and be stably maintained there for generations. Phages with a lysogenic life cycle are also called temperate phages. Bacteriophage T12, proposed member of family Siphoviridae including related speA-carrying bacteriophages, is also a prototypic phage for all the speA-carrying phages of Streptococcus pyogenes, meaning that its genome is the prototype for the genomes of all such phages of S. pyogenes. It is the main suspect as the cause of scarlet fever, an infectious disease that affects small children.

<span class="mw-page-title-main">Lancefield grouping</span>

Lancefield grouping is a system of classification that classifies catalase-negative Gram-positive cocci based on the carbohydrate composition of bacterial antigens found on their cell walls. The system, created by Rebecca Lancefield, was historically used to organize the various members of the family Streptococcaceae, which includes the genera Lactococcus and Streptococcus, but now is largely superfluous due to explosive growth in the number of streptococcal species identified since the 1970s. However, it has retained some clinical usefulness even after the taxonomic changes, and as of 2018, Lancefield designations are still often used to communicate medical microbiological test results.

References

  1. "Streptococcus pyogenes - Pathogen Safety Data Sheets". Government of Canada, Public Health Agency of Canada. 2001-09-26.
  2. 1 2 3 4 5 Ryan KJ, Ray CG, eds. (2004). Sherris Medical Microbiology (4th ed.). McGraw Hill. ISBN   978-0-8385-8529-0.
  3. Spellerberg B, Brandt C (9 October 2022) [Originally published 15 September 2022]. "Chapter 29: Laboratory Diagnosis of Streptococcus pyogenes (group A streptococci)". In Ferretti JJ, Stevens DL, Fischetti VA (eds.). Streptococcus pyogenes: Basic Biology to Clinical Manifestations (2nd ed.). Oklahoma City, United States: University of Oklahoma Health Sciences Center. PMID   36479747 . Retrieved 11 May 2023 via National Center for Biotechnology Information, National Library of Medicine.
  4. Aziz RK, Kansal R, Aronow BJ, Taylor WL, Rowe SL, Kubal M, et al. (April 2010). Ahmed N (ed.). "Microevolution of group A streptococci in vivo: capturing regulatory networks engaged in sociomicrobiology, niche adaptation, and hypervirulence". PLOS ONE. 5 (4): e9798. Bibcode:2010PLoSO...5.9798A. doi: 10.1371/journal.pone.0009798 . PMC   2854683 . PMID   20418946.
  5. Jim Dwyer (July 11, 2012). "An Infection, Unnoticed, Turns Unstoppable". The New York Times. Retrieved July 12, 2012.
  6. Jim Dwyer (July 18, 2012). "After Boy's Death, Hospital Alters Discharging Procedures". The New York Times. Retrieved July 19, 2012.
  7. 1 2 Pardo S, Perera TB (2023), "Scarlet Fever", StatPearls, Treasure Island (FL): StatPearls Publishing, PMID   29939666 , retrieved 2024-01-14
  8. Gera K, McIver KS (October 2013). "Laboratory growth and maintenance of Streptococcus pyogenes (the Group A Streptococcus, GAS)". Current Protocols in Microbiology. 30: 9D.2.1–9D.2.13. doi:10.1002/9780471729259.mc09d02s30. PMC   3920295 . PMID   24510893.
  9. 1 2 3 Androulla E, Theresa L (10 February 2016). "Epidemiology of Streptococcus pyogenes". Streptococcus pyogenes : Basic Biology to Clinical Manifestations. Oklahoma City, United States: University of Oklahoma Health Sciences Center. PMID   26866237 . Retrieved 24 February 2018.
  10. Tanaka H, Katsuragi S, Hasegawa J, Tanaka K, Osato K, Nakata M, et al. (January 2019). "The most common causative bacteria in maternal sepsis-related deaths in Japan were group A Streptococcus: A nationwide survey". Journal of Infection and Chemotherapy. 25 (1): 41–44. doi:10.1016/j.jiac.2018.10.004. PMID   30377069.
  11. Pignanelli S, Brusa S, Pulcrano G, Catania MR, Cocchi E, Lanari M (October 2015). "A rare case of infant sepsis due to the emm-89 genotype of Group A Streptococcus within a community-acquired cluster". The New Microbiologica. 38 (4): 589–592. PMID   26485019.
  12. Lancefield RC (January 1928). "The Antigenic Complex of Streptococcus Hæmolyticus". The Journal of Experimental Medicine. 47 (1): 91–103. doi:10.1084/jem.47.1.91. PMC   2131344 . PMID   19869404.
  13. Lancefield RC, Dole VP (October 1946). "The Properties of T Antigens Extracted from Group a Hemolytic Streptococci". The Journal of Experimental Medicine. 84 (5): 449–471. doi:10.1084/jem.84.5.449. PMC   2135665 . PMID   19871581.
  14. Mora M, Bensi G, Capo S, Falugi F, Zingaretti C, Manetti AG, et al. (October 2005). "Group A Streptococcus produce pilus-like structures containing protective antigens and Lancefield T antigens". Proceedings of the National Academy of Sciences of the United States of America. 102 (43): 15641–15646. Bibcode:2005PNAS..10215641M. doi: 10.1073/pnas.0507808102 . PMC   1253647 . PMID   16223875.
  15. Ferretti JJ, McShan WM, Ajdic D, Savic DJ, Savic G, Lyon K, et al. (April 2001). "Complete genome sequence of an M1 strain of Streptococcus pyogenes". Proceedings of the National Academy of Sciences of the United States of America. 98 (8): 4658–4663. Bibcode:2001PNAS...98.4658F. doi: 10.1073/pnas.071559398 . PMC   31890 . PMID   11296296.
  16. Canchaya C, Desiere F, McShan WM, Ferretti JJ, Parkhill J, Brüssow H (October 2002). "Genome analysis of an inducible prophage and prophage remnants integrated in the Streptococcus pyogenes strain SF370". Virology. 302 (2): 245–258. doi: 10.1006/viro.2002.1570 . PMID   12441069.
  17. Banks DJ, Porcella SF, Barbian KD, Martin JM, Musser JM (December 2003). "Structure and distribution of an unusual chimeric genetic element encoding macrolide resistance in phylogenetically diverse clones of group A Streptococcus". The Journal of Infectious Diseases. 188 (12): 1898–1908. doi: 10.1086/379897 . PMID   14673771.
  18. Patterson MJ (1996). "Streptococcus". In Baron S; et al. (eds.). Streptococcus. In: Baron's Medical Microbiology (4th ed.). Univ of Texas Medical Branch. ISBN   978-0-9631172-1-2.
  19. Bisno AL, Brito MO, Collins CM (April 2003). "Molecular basis of group A streptococcal virulence". The Lancet. Infectious Diseases. 3 (4): 191–200. doi:10.1016/S1473-3099(03)00576-0. PMID   12679262.
  20. Engel ME, Muhamed B, Whitelaw AC, Musvosvi M, Mayosi BM, Dale JB (February 2014). "Group A streptococcal emm type prevalence among symptomatic children in Cape Town and potential vaccine coverage". The Pediatric Infectious Disease Journal. 33 (2): 208–210. doi:10.1097/INF.0b013e3182a5c32a. PMC   3947201 . PMID   23934204.
  21. Nelson DC, Garbe J, Collin M (December 2011). "Cysteine proteinase SpeB from Streptococcus pyogenes - a potent modifier of immunologically important host and bacterial proteins". Biological Chemistry. 392 (12): 1077–1088. doi: 10.1515/BC.2011.208 . PMID   22050223. S2CID   207441558.
  22. Starr CR, Engleberg NC (January 2006). "Role of hyaluronidase in subcutaneous spread and growth of group A streptococcus". Infection and Immunity. 74 (1): 40–48. doi:10.1128/IAI.74.1.40-48.2006. PMC   1346594 . PMID   16368955.
  23. Buchanan JT, Simpson AJ, Aziz RK, Liu GY, Kristian SA, Kotb M, et al. (February 2006). "DNase expression allows the pathogen group A Streptococcus to escape killing in neutrophil extracellular traps". Current Biology. 16 (4): 396–400. doi:10.1016/j.cub.2005.12.039. PMID   16488874. S2CID   667804.
  24. Wexler DE, Chenoweth DE, Cleary PP (December 1985). "Mechanism of action of the group A streptococcal C5a inactivator". Proceedings of the National Academy of Sciences of the United States of America. 82 (23): 8144–8148. Bibcode:1985PNAS...82.8144W. doi: 10.1073/pnas.82.23.8144 . PMC   391459 . PMID   3906656.
  25. 1 2 Ji Y, McLandsborough L, Kondagunta A, Cleary PP (February 1996). "C5a peptidase alters clearance and trafficking of group A streptococci by infected mice". Infection and Immunity. 64 (2): 503–510. doi:10.1128/IAI.64.2.503-510.1996. PMC   173793 . PMID   8550199.
  26. 1 2 Hidalgo-Grass C, Mishalian I, Dan-Goor M, Belotserkovsky I, Eran Y, Nizet V, et al. (October 2006). "A streptococcal protease that degrades CXC chemokines and impairs bacterial clearance from infected tissues". The EMBO Journal. 25 (19): 4628–4637. doi:10.1038/sj.emboj.7601327. PMC   1589981 . PMID   16977314.
  27. Hidalgo-Grass C, Dan-Goor M, Maly A, Eran Y, Kwinn LA, Nizet V, et al. (February 2004). "Effect of a bacterial pheromone peptide on host chemokine degradation in group A streptococcal necrotising soft-tissue infections". Lancet. 363 (9410): 696–703. doi:10.1016/S0140-6736(04)15643-2. PMID   15001327. S2CID   7219898.
  28. Beres SB, Richter EW, Nagiec MJ, Sumby P, Porcella SF, DeLeo FR, Musser JM (May 2006). "Molecular genetic anatomy of inter- and intraserotype variation in the human bacterial pathogen group A Streptococcus". Proceedings of the National Academy of Sciences of the United States of America. 103 (18): 7059–7064. Bibcode:2006PNAS..103.7059B. doi: 10.1073/pnas.0510279103 . PMC   1459018 . PMID   16636287.
  29. "Streptococcus pyogenes NZ131".
  30. McShan WM, Ferretti JJ, Karasawa T, Suvorov AN, Lin S, Qin B, et al. (December 2008). "Genome sequence of a nephritogenic and highly transformable M49 strain of Streptococcus pyogenes". Journal of Bacteriology. 190 (23): 7773–7785. doi:10.1128/JB.00672-08. PMC   2583620 . PMID   18820018.
  31. Sumby P, Porcella SF, Madrigal AG, Barbian KD, Virtaneva K, Ricklefs SM, et al. (September 2005). "Evolutionary origin and emergence of a highly successful clone of serotype M1 group a Streptococcus involved multiple horizontal gene transfer events". The Journal of Infectious Diseases. 192 (5): 771–782. doi: 10.1086/432514 . PMID   16088826.
  32. "Streptococcus pyogenes MGAS5005".
  33. Salvà-Serra F, Jaén-Luchoro D, Jakobsson HE, Gonzales-Siles L, Karlsson R, Busquets A, et al. (July 2020). "Complete genome sequences of Streptococcus pyogenes type strain reveal 100%-match between PacBio-solo and Illumina-Oxford Nanopore hybrid assemblies". Scientific Reports. 10 (1): 11656. doi:10.1038/s41598-020-68249-y. PMC   7363880 . PMID   32669560.
  34. 1 2 3 4 Chang JC, LaSarre B, Jimenez JC, Aggarwal C, Federle MJ (August 2011). "Two group A streptococcal peptide pheromones act through opposing Rgg regulators to control biofilm development". PLOS Pathogens. 7 (8): e1002190. doi: 10.1371/journal.ppat.1002190 . PMC   3150281 . PMID   21829369.
  35. Schroeder JL, Steinke EE (December 2005). "Necrotizing fasciitis--the importance of early diagnosis and debridement". AORN Journal. 82 (6): 1031–1040. doi:10.1016/s0001-2092(06)60255-x. PMID   16478083.
  36. "Necrotizing Fasciitis". CDC. Content source: National Center for Immunization and Respiratory Diseases, Division of Bacterial Diseases. Page maintained by: Office of the Associate Director for Communication, Digital Media Branch, Division of Public Affairs. October 26, 2017. Retrieved 2018-01-06.
  37. Baucells BJ, Mercadal Hally M, Álvarez Sánchez AT, Figueras Aloy J (November 2016). "Asociaciones de probióticos para la prevención de la enterocolitis necrosante y la reducción de la sepsis tardía y la mortalidad neonatal en recién nacidos pretérmino de menos de 1.500g: una revisión sistemática" [Probiotic associations in the prevention of necrotising enterocolitis and the reduction of late-onset sepsis and neonatal mortality in preterm infants under 1,500g: A systematic review]. Anales de Pediatria (in Spanish). 85 (5): 247–255. doi: 10.1016/j.anpedi.2015.07.038 . PMID   26611880.
  38. Berner R, Herdeg S, Gordjani N, Brandis M (July 2000). "Streptococcus pyogenes meningitis: report of a case and review of the literature". European Journal of Pediatrics. 159 (7): 527–529. doi:10.1007/s004310051325. PMID   10923229. S2CID   7693087.
  39. Othman AM, Assayaghi RM, Al-Shami HZ, Saif-Ali R (June 2019). "Asymptomatic carriage of Streptococcus pyogenes among school children in Sana'a city, Yemen". BMC Research Notes. 12 (1): 339. doi: 10.1186/s13104-019-4370-5 . PMC   6570875 . PMID   31200755.
  40. Oliver J, Malliya Wadu E, Pierse N, Moreland NJ, Williamson DA, Baker MG (March 2018). "Group A Streptococcus pharyngitis and pharyngeal carriage: A meta-analysis". PLOS Neglected Tropical Diseases. 12 (3): e0006335. doi: 10.1371/journal.pntd.0006335 . PMC   5875889 . PMID   29554121.
  41. Tadesse, Molla (March 2023). "Prevalence, Antibiotic Susceptibility Profile and Associated Factors of Group A Streptococcal pharyngitis Among Pediatric Patients with Acute Pharyngitis in Gondar, Northwest Ethiopia". Infection and Drug Resistance. 16: 1637–1648. doi: 10.2147/IDR.S402292 . PMC   40342 . PMID   36992964.
  42. "Package leaflet on BIOL official website" (PDF). Archived (PDF) from the original on 2022-10-10.
  43. Guilherme L, Ferreira FM, Köhler KF, Postol E, Kalil J (February 2013). "A vaccine against Streptococcus pyogenes: the potential to prevent rheumatic fever and rheumatic heart disease". American Journal of Cardiovascular Drugs. 13 (1): 1–4. doi: 10.1007/s40256-013-0005-8 . PMID   23355360. S2CID   13071864.
  44. Howarth M (May 2017). "Smart superglue in streptococci? The proof is in the pulling". The Journal of Biological Chemistry. 292 (21): 8998–8999. doi: 10.1074/jbc.H117.777466 . PMC   5448131 . PMID   28550142.
  45. Zakeri B, Fierer JO, Celik E, Chittock EC, Schwarz-Linek U, Moy VT, Howarth M (March 2012). "Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin". Proceedings of the National Academy of Sciences of the United States of America. 109 (12): E690–E697. Bibcode:2012PNAS..109E.690Z. doi: 10.1073/pnas.1115485109 . PMC   3311370 . PMID   22366317.
  46. Baruah K, Bowden TA, Krishna BA, Dwek RA, Crispin M, Scanlan CN (June 2012). "Selective deactivation of serum IgG: a general strategy for the enhancement of monoclonal antibody receptor interactions". Journal of Molecular Biology. 420 (1–2): 1–7. doi:10.1016/j.jmb.2012.04.002. PMC   3437440 . PMID   22484364.
  47. Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, et al. (March 2011). "CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III". Nature. 471 (7340): 602–607. Bibcode:2011Natur.471..602D. doi:10.1038/nature09886. PMC   3070239 . PMID   21455174.
  48. Zimmer C (2016-06-03). "Scientists Find Form of Crispr Gene Editing With New Capabilities". The New York Times. ISSN   0362-4331 . Retrieved 2016-06-10.

Further reading