Clostridium

Last updated

Clostridium
Clostridium botulinum 01.png
Photomicrograph of Clostridium botulinum bacteria stained with crystal violet
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Bacteria
Kingdom: Bacillati
Phylum: Bacillota
Class: Clostridia
Order: Eubacteriales
Family: Clostridiaceae
Genus: Clostridium
Prazmowski 1880
Species

164 Species
See List of Clostridium species for complete taxonomy.

Contents

Clostridium is a genus of anaerobic, Gram-positive bacteria. Species of Clostridium inhabit soils and the intestinal tracts of animals, including humans. [1] This genus includes several significant human pathogens, including the causative agents of botulism and tetanus. It also formerly included an important cause of diarrhea, Clostridioides difficile , which was reclassified into the Clostridioides genus in 2016. [2]

History

Circa 1880, in the course of studying fermentation and butyric acid synthesis, a scientist surnamed Prazmowski first assigned a binomial name to Clostridium butyricum. [3] The mechanisms of anaerobic respiration were still not yet well elucidated at that time, so taxonomy of anaerobes was still developing. [3]

Taxonomy

As of October 2022, there are 164 validly published species in Clostridium. [4]

The genus, as traditionally defined, contains many organisms not closely related to its type species. The issue was originally illustrated in full detail by a rRNA phylogeny from Collins 1994, which split the traditional genus (now corresponding to a large slice of Clostridia) into twenty clusters, with cluster I containing the type species Clostridium butyricum and its close relatives. [5] Over the years, this has resulted in many new genera being split out, with the ultimate goal of constraining Clostridium to cluster I. [6]

"Clostridium" cluster XIVa (now Lachnospiraceae) [7] and "Clostridium" cluster IV (now Ruminococcaceae) [7] efficiently ferment plant polysaccharide composing dietary fiber, [8] making them important and abundant taxa in the rumen and the human large intestine. [9] As mentioned before, these clusters are not part of current Clostridium, [5] [10] and use of these terms should be avoided due to ambiguous or inconsistent usage. [7]

Biochemistry

Species of Clostridium are obligate anaerobe and capable of producing endospores. They generally stain gram-positive, but as well as Bacillus , are often described as Gram-variable, because they show an increasing number of gram-negative cells as the culture ages. [11] The Schaeffer–Fulton stain (0.5% malachite green in water) can be used to distinguish endospores of Bacillus and Clostridium from other microorganisms. [12]

Clostridium can be differentiated from the also endospore forming genus Bacillus by its obligate anaerobic growth, the shape of endospores and the lack of catalase. Species of Desulfotomaculum form similar endospores and can be distinguished by their requirement for sulfur. [1] Glycolysis and fermentation of pyruvic acid by Clostridia yield butyric acid, butanol, acetone, isopropanol, and carbon dioxide. [11]

A commercially available polymerase chain reaction (PCR) test kit for C. perfringens exists. [13]

Biology and pathogenesis

Clostridium species are readily found inhabiting soils and intestinal tracts. Clostridium species are also a normal inhabitant of the healthy lower reproductive tract of females. [14]

The main species responsible for disease in humans are: [15]

Several more pathogenic species, that were previously described in Clostridium, have been found to belong to other genera. [6]

Treatment

Clostridium welchii and Clostridium tetani respond to sulfonamides. [19] Clostridia are also susceptible to tetracyclines, carbapenems (imipenem), metronidazole, vancomycin, and chloramphenicol. [20]

Clostridiumbotulinum is highly resistant to radiation. The vegetative cells of clostridia are heat-labile and are killed by short heating at temperatures above 72–75 °C (162–167 °F). [21]

Lysozyme, nitrate, nitrite and propionic acid salts inhibit clostridia growth in certain food products. [22] [23] [24]

Use

References

  1. 1 2 Maczulak A (2011), "Clostridium", Encyclopedia of Microbiology, Facts on File, pp. 168–173, ISBN   978-0-8160-7364-1
  2. Dieterle, Michael G.; Rao, Krishna; Young, Vincent B. (2019). "Novel therapies and preventative strategies for primary and recurrent Clostridium difficile infections". Annals of the New York Academy of Sciences. 1435 (1): 110–138. Bibcode:2019NYASA1435..110D. doi:10.1111/nyas.13958. ISSN   1749-6632. PMC   6312459 . PMID   30238983.
  3. 1 2 Newman, Sir George (1904). Bacteriology and the Public Health. Philadelphia, Pennsylvania: P. Blakiston's Son and Co. pp. 107–108. ISBN   978-1-345-75027-0.{{cite book}}: ISBN / Date incompatibility (help)
  4. Page Genus: Clostridium on "LPSN - List of Prokaryotic names with Standing in Nomenclature". Deutsche Sammlung von Mikroorganismen und Zellkulturen . Retrieved 2022-10-03.
  5. 1 2 Collins, MD; Lawson, PA; Willems, A; Cordoba, JJ; Fernandez-Garayzabal, J; Garcia, P; Cai, J; Hippe, H; Farrow, JA (October 1994). "The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations". International Journal of Systematic Bacteriology. 44 (4): 812–26. doi: 10.1099/00207713-44-4-812 . PMID   7981107.
  6. 1 2 Lawson, PA; Rainey, FA (February 2016). "Proposal to restrict the genus Clostridium Prazmowski to Clostridium butyricum and related species". International Journal of Systematic and Evolutionary Microbiology. 66 (2): 1009–1016. doi: 10.1099/ijsem.0.000824 . PMID   26643615.
  7. 1 2 3 Oh, Hyunseok (September 18, 2018). "Taxonomy Of Clostridium Clusters XIVa And IV". eMedicine. EzBioCloud . Retrieved 2021-06-04.
  8. Boutard M, Cerisy T, Nogue PY, Alberti A, Weissenbach J, Salanoubat M, Tolonen AC (November 2014). "Functional diversity of carbohydrate-active enzymes enabling a bacterium to ferment plant biomass". PLOS Genetics. 10 (11) e1004773. doi: 10.1371/journal.pgen.1004773 . PMC   4230839 . PMID   25393313.
  9. Lopetuso LR, Scaldaferri F, Petito V, Gasbarrini A (August 2013). "Commensal Clostridia: leading players in the maintenance of gut homeostasis". Gut Pathogens. 5 (1): 23. doi: 10.1186/1757-4749-5-23 . PMC   3751348 . PMID   23941657.
  10. Lopetuso LR, Scaldaferri F, PetitoV, Gasbarrini A (2013). "Commensal Clostridia: leading players in the maintenance of gut homeostasis". Gut Pathogens . 5 (1): 23. doi: 10.1186/1757-4749-5-23 . PMC   3751348 . PMID   23941657.
  11. 1 2 3 Tortora GJ, Funke BR, Case CL (2010), Microbiology: An Introduction (10th ed.), Benjamin Cummings, pp. 87, 134, 433, ISBN   978-0-321-55007-1
  12. Maczulak A (2011), "stain", Encyclopedia of Microbiology, Facts on File, pp. 726–729, ISBN   978-0-8160-7364-1
  13. Willems H, Jäger C, Reiner G (2007), "Polymerase Chain Reaction", Ullmann's Encyclopedia of Industrial Chemistry (7th ed.), Wiley, pp. 1–27, doi:10.1002/14356007.c21_c01.pub2, ISBN   978-3-527-30673-2, S2CID   86159965
  14. Hoffman B (2012). Williams gynecology (2nd ed.). New York: McGraw-Hill Medical. p. 65. ISBN   978-0-07-171672-7.
  15. Wells CL, Wilkins TD, Baron S (1996). "Clostridia: Sporeforming Anaerobic Bacilli". In Baron S, et al. (eds.). Baron's Medical Microbiology (4th ed.). Univ. of Texas Medical Branch. ISBN   978-0-9631172-1-2. PMID   21413315.
  16. Kiu R, Hall LJ (August 2018). "An update on the human and animal enteric pathogen Clostridium perfringens". Emerging Microbes & Infections. 7 (1): 141. doi:10.1038/s41426-018-0144-8. PMC   6079034 . PMID   30082713.
  17. Kiu R, Brown J, Bedwell H, Leclaire C, Caim S, Pickard D, et al. (October 2019). "Clostridium perfringens strains and exploratory caecal microbiome investigation reveals key factors linked to poultry necrotic enteritis". Animal Microbiome. 1 (1): 12. doi: 10.1186/s42523-019-0015-1 . PMC   7000242 . PMID   32021965.
  18. Meites E, Zane S, Gould C (September 2010). "Fatal Clostridium sordellii infections after medical abortions". The New England Journal of Medicine. 363 (14): 1382–3. doi: 10.1056/NEJMc1001014 . PMID   20879895.
  19. Actor P, Chow AW, Dutko FJ, McKinlay MA (2007), "Chemotherapeutics", Ullmann's Encyclopedia of Industrial Chemistry (7th ed.), Wiley, pp. 1–61, doi:10.1002/14356007.a06_173, ISBN   978-3-527-30673-2
  20. Harvey RA, ed. (2012), Lippincott's Illustrated Reviews: Pharmacology (5th ed.), Lippincott, pp. 389–404, ISBN   978-1-4511-1314-3
  21. Jelen P (2007), "Foods, 2. Food Technology", Ullmann's Encyclopedia of Industrial Chemistry (7th ed.), Wiley, pp. 1–38, doi:10.1002/14356007.a11_523, ISBN   978-3-527-30673-2
  22. Burkhalter G, Steffen C, Puhan Z (2007), "Cheese, Processed Cheese, and Whey", Ullmann's Encyclopedia of Industrial Chemistry (7th ed.), Wiley, pp. 1–11, doi:10.1002/14356007.a06_163, ISBN   978-3-527-30673-2
  23. Honikel KO (2007), "Meat and Meat Products", Ullmann's Encyclopedia of Industrial Chemistry (7th ed.), Wiley, pp. 1–17, doi:10.1002/14356007.e16_e02.pub2, ISBN   978-3-527-30673-2
  24. Samel Ul, Kohler W, Gamer AO, Keuser U (2007), "Propionic Acid and Derivatives", Ullmann's Encyclopedia of Industrial Chemistry (7th ed.), Wiley, pp. 1–18, doi:10.1002/14356007.a22_223, ISBN   978-3-527-30673-2
  25. GBapplication 191504845,Weizmann C,"Improvements in the Bacterial Fermentation of Carbohydrates and in Bacterial Cultures for the same",published 1919-03-06, assigned to Charles Weizmann and U.S. patent 1,315,585
  26. Velickovic M, Benabou R, Brin MF (2001). "Cervical dystonia pathophysiology and treatment options". Drugs. 61 (13): 1921–43. doi:10.2165/00003495-200161130-00004. PMID   11708764. S2CID   46954613.
  27. Ariyoshi T, Hagihara M, Takahashi M, Mikamo H (February 2022). "Effect of Clostridium butyricum on Gastrointestinal Infections". Biomedicines. 10 (2): 483. doi: 10.3390/biomedicines10020483 . PMC   8962260 . PMID   35203691.
  28. Doherty GM, ed. (2005), "Inflammation, Infection, & Antimicrobial Therapy", Current Diagnosis & Treatment: Surgery, McGraw-Hill, ISBN   978-0-07-159087-7
  29. "Providing for a Sustainable Energy Future". Bioengineering Resources, inc. Retrieved 21 May 2007.
  30. Saint-Amans S, Perlot P, Goma G, Soucaille P (August 1994). "High production of 1,3-propanediol from gycerol by clostridium butyricum VPI 3266 in a simply controlled fed-batch system". Biotechnology Letters. 16 (8): 831–836. doi:10.1007/BF00133962. S2CID   2896050.
  31. Hall, J; Ali, S; Surani, MA; Hazlewood, GP; Clark, AJ; Simons, JP; Hirst, BH; Gilbert, HJ (March 1993). "Manipulation of the repertoire of digestive enzymes secreted into the gastrointestinal tract of transgenic mice". Bio/Technology (Nature Publishing Company). 11 (3): 376–9. doi:10.1038/nbt0393-376. PMID   7763439.
  32. Zhang, JX; Meidinger, R; Forsberg, CW; Krell, PJ; Phillips, JP (15 July 1999). "Expression and processing of a bacterial endoglucanase in transgenic mice". Archives of Biochemistry and Biophysics. 367 (2): 317–21. doi:10.1006/abbi.1999.1243. PMID   10395750.
  33. Mengesha A, Dubois L, Paesmans K, Wouters B, Lambin P, Theys J (2009). "Clostridia in Anti-tumor Therapy". In Brüggemann H, Gottschalk G (eds.). Clostridia: Molecular Biology in the Post-genomic Era . Caister Academic Press. ISBN   978-1-904455-38-7.
  34. Chou CH, Han CL, Chang JJ, Lay JJ (October 2011). "Co-culture of Clostridium beijerinckii L9, Clostridium butyricum M1 and Bacillus thermoamylovorans B5 for converting yeast waste into hydrogen". International Journal of Hydrogen Energy. 36 (21): 13972–13983. Bibcode:2011IJHE...3613972C. doi:10.1016/j.ijhydene.2011.03.067.