Porphyromonas

Last updated

Porphyromonas
Porphyromonas gulae on TSA plate 02.jpg
Colonies of Porphyromonas gulae growing on a TSA plate
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Bacteria
Phylum: Bacteroidota
Class: Bacteroidia
Order: Bacteroidales
Family: Porphyromonadaceae
Genus: Porphyromonas
Shah and Collins 1988 [1]
Type species
Porphyromonas asaccharolytica [1]
Species

P. asaccharolytica [1]
P. bennonis [1]
P. cangingivalis [1]
P. canoris [1]
P. catoniae [1]
P. circumdentaria [1]
P. crevioricanis [1]
P. endodontalis [1]
P. gingivalis [1]
P. gingivicanis [1]
P. gulae [1]
P. levii [1]
P. macacae [1]
P. pasteri [1]
P. pogonae [1]
P. somerae [1]
P. uenonis [1]

Contents

Synonyms [2]
  • OribaculumMoore and Moore 1994

Porphyromonas is a Gram-negative, non-spore-forming, obligately anaerobic and non-motile genus from the family Porphyromonadaceae. [3] [1] [2] [4] There were 16 different Porphyromonas species documented as of 2015, which reside in both animal and human reservoirs. [5] It was discovered more recently that Porphyromonas also exist in the environment, albeit to a lesser extent. [6] This genus is notably implicated in the modulation of oral cavity, respiratory tract, and gastrointestinal tract disease states. [5] It is suggested that Porphyromonas either operate as benign bacteria pertinent to host immunity or are potential pathobionts that opportunistically provoke diseased states when homeostasis is disrupted. [6] Despite its characterization not being fully elucidated due to sparse research, various studies report the prevalence of this genus at 58.7% in healthy states compared with 41.3% in diseased states. [6]

This genus was first reported in the oral cavity [5] and is found specifically in the salivary microbiome. [7] Porphyromonas are also commonly found in the microbiome of the human digestive tract, as shown by the Human Microbiome Project in general. [8]

Distribution of species

While overlap exists between humans and animals in the distribution of Porphyromonas species, some species are more prevalent in each. [5]

Humans

P. asaccharolytica, P. endodontalis, P. gingivalis, P. catoniae, P. pasteri, P. somerae, and P. uenonis [5]

Porphyromonas endodontalis in humans

Animals

P. cangingivalis, P. canoris, P. cansulsi, P. circumdentaria, P. crevioricanis, P. gingivicanis, P. salivosa, P. macacae, P. gulae, and P. levii [5] Porphyromonas genus is commonly found in healthy stallion semen <(https://doi.org/10.1016/j.anireprosci.2020.106568)>

Environment

Porphyromonas have been isolated from manmade and naturally occurring environments. Most of these species have been detected in manmade environments, including transportation systems, healthcare settings, and indoor facilities; Porphyromonas persist in naturally occurring environments such as air, soil, seawater, freshwater, agricultural sites, and alpine meadows to a lesser extent. Furthermore, waste-management sites are a pertinent source of environment-dwelling species. [6] Specific environmentally hosted strains have not been widely studied or identified.

Health impacts

Oral cavity

Gastrointestinal tract

Respiratory tract

Uterine tract

Other

Alterations in Porphyromonas abundance have also been associated with various cancers, autoimmune and neurodegenerative conditions, [6] vaginal diseases, rheumatoid arthritis, and Sjogren's syndrome. [5]

Detection methods

Porphyromonas is most commonly detected via utilization of 16s rRNA sequencing techniques. [16] [17]

Related Research Articles

<i>Fusobacterium</i> Genus of bacteria

Fusobacterium is a genus of obligate anaerobic, Gram-negative, non-sporeforming bacteria belonging to Gracilicutes. Individual cells are slender, rod-shaped bacilli with pointed ends. Fusobacterium was discovered in 1900 by Courmont and Cade and is common in the flora of humans.

Dental plaque is a biofilm of microorganisms that grows on surfaces within the mouth. It is a sticky colorless deposit at first, but when it forms tartar, it is often brown or pale yellow. It is commonly found between the teeth, on the front of teeth, behind teeth, on chewing surfaces, along the gumline (supragingival), or below the gumline cervical margins (subgingival). Dental plaque is also known as microbial plaque, oral biofilm, dental biofilm, dental plaque biofilm or bacterial plaque biofilm. Bacterial plaque is one of the major causes for dental decay and gum disease.

<i>Enterococcus faecalis</i> Species of bacterium

Enterococcus faecalis – formerly classified as part of the group D Streptococcus system – is a Gram-positive, commensal bacterium inhabiting the gastrointestinal tracts of humans. Like other species in the genus Enterococcus, E. faecalis is found in healthy humans and can be used as a probiotic. The probiotic strains such as Symbioflor1 and EF-2001 are characterized by the lack of specific genes related to drug resistance and pathogenesis. As an opportunistic pathogen, E. faecalis can cause life-threatening infections, especially in the nosocomial (hospital) environment, where the naturally high levels of antibiotic resistance found in E. faecalis contribute to its pathogenicity. E. faecalis has been frequently found in reinfected, root canal-treated teeth in prevalence values ranging from 30% to 90% of the cases. Re-infected root canal-treated teeth are about nine times more likely to harbor E. faecalis than cases of primary infections.

<i>Bacteroides</i> Genus of bacteria

Bacteroides is a genus of Gram-negative, obligate anaerobic bacteria. Bacteroides species are non endospore–forming bacilli, and may be either motile or nonmotile, depending on the species. The DNA base composition is 40–48% GC. Unusual in bacterial organisms, Bacteroides membranes contain sphingolipids. They also contain meso-diaminopimelic acid in their peptidoglycan layer.

<i>Bacteroides fragilis</i> Species of bacterium

Bacteroides fragilis is an anaerobic, Gram-negative, pleomorphic to rod-shaped bacterium. It is part of the normal microbiota of the human colon and is generally commensal, but can cause infection if displaced into the bloodstream or surrounding tissue following surgery, disease, or trauma.

Focal infection theory is the historical concept that many chronic diseases, including systemic and common ones, are caused by focal infections. In present medical consensus, a focal infection is a localized infection, often asymptomatic, that causes disease elsewhere in the host, but focal infections are fairly infrequent and limited to fairly uncommon diseases. Focal infection theory, rather, so explained virtually all diseases, including arthritis, atherosclerosis, cancer, and mental illnesses.

Porphyromonas gingivalis belongs to the phylum Bacteroidota and is a nonmotile, Gram-negative, rod-shaped, anaerobic, pathogenic bacterium. It forms black colonies on blood agar.

<span class="mw-page-title-main">Root canal treatment</span> Procedure to disinfect and fortify the interior of a tooth

Root canal treatment is a treatment sequence for the infected pulp of a tooth that is intended to result in the elimination of infection and the protection of the decontaminated tooth from future microbial invasion. Root canals, and their associated pulp chamber, are the physical hollows within a tooth that are naturally inhabited by nerve tissue, blood vessels and other cellular entities.

<span class="mw-page-title-main">Oral microbiology</span>

Oral microbiology is the study of the microorganisms (microbiota) of the oral cavity and their interactions between oral microorganisms or with the host. The environment present in the human mouth is suited to the growth of characteristic microorganisms found there. It provides a source of water and nutrients, as well as a moderate temperature. Resident microbes of the mouth adhere to the teeth and gums to resist mechanical flushing from the mouth to stomach where acid-sensitive microbes are destroyed by hydrochloric acid.

Treponema denticola is a Gram-negative, obligate anaerobic, motile and highly proteolytic spirochete bacterium. It is one of four species of oral spirochetes to be reliably cultured, the others being Treponema pectinovorum, Treponema socranskii and Treponema vincentii. T. denticola dwells in a complex and diverse microbial community within the oral cavity and is highly specialized to survive in this environment. T. denticola is associated with the incidence and severity of human periodontal disease. Treponema denticola is one of three bacteria that form the Red Complex, the other two being Porphyromonas gingivalis and Tannerella forsythia. Together they form the major virulent pathogens that cause chronic periodontitis. Having elevated T. denticola levels in the mouth is considered one of the main etiological agents of periodontitis. T. denticola is related to the syphilis-causing obligate human pathogen, Treponema pallidum subsp. pallidum. It has also been isolated from women with bacterial vaginosis.

Prevotella melaninogenica is a species of bacterium in the normal microbiota of the upper respiratory tract. It is an important human pathogen in various anaerobic infections, often mixed with other aerobic and anaerobic bacteria. P. melaninogenica is an anaerobic, Gram-negative rod, named for its black colonies, and black pigment.

Prevotella is a genus of Gram-negative bacteria.

<span class="mw-page-title-main">Tooth resorption</span> Breakdown of the tooth root to be absorbed by the blood

Resorption of the root of the tooth, or root resorption, is the progressive loss of dentin and cementum by the action of odontoclasts. Root resorption is a normal physiological process that occurs in the exfoliation of the primary dentition. However, pathological root resorption occurs in the permanent or secondary dentition and sometimes in the primary dentition.

Tannerella forsythia is an anaerobic, Gram-negative bacterial species of the Bacteroidota phylum. It has been implicated in periodontal diseases and is a member of the red complex of periodontal pathogens. T. forsythia was previously named Bacteroides forsythus and Tannerella forsythensis.

Campylobacter rectus is a species of Campylobacter. It is implicated as a pathogen in chronic periodontitis, which can induce bone loss. This motile bacillus is a Gram negative, facultative anaerobe. C. rectus is associated with hypertension together with Prevotella melaninogenica and Veillonella parvula.

The red complex is a group of bacteria that are categorized together based on their association with severe forms of periodontal disease. The red complex—among a number of other complexes—were classified by Sigmund Socransky in 1998.

Anaerobic infections are caused by anaerobic bacteria. Obligately anaerobic bacteria do not grow on solid media in room air ; facultatively anaerobic bacteria can grow in the presence or absence of air. Microaerophilic bacteria do not grow at all aerobically or grow poorly, but grow better under 10% carbon dioxide or anaerobically. Anaerobic bacteria can be divided into strict anaerobes that can not grow in the presence of more than 0.5% oxygen and moderate anaerobic bacteria that are able of growing between 2 and 8% oxygen. Anaerobic bacteria usually do not possess catalase, but some can generate superoxide dismutase which protects them from oxygen.

Dialister pneumosintes is a nonfermentative, anaerobic, gram-negative rod that grows with small, circular, transparent, shiny, smooth colonies on blood agar. D. pneumosintes has been recovered from deep periodontal pockets, but little is known about the relationship between the organism and destructive periodontal disease.

<span class="mw-page-title-main">Regenerative endodontics</span> Dental specialty

Regenerative endodontic procedures is defined as biologically based procedures designed to replace damaged structures such as dentin, root structures, and cells of the pulp-dentin complex. This new treatment modality aims to promote normal function of the pulp. It has become an alternative to heal apical periodontitis. Regenerative endodontics is the extension of root canal therapy. Conventional root canal therapy cleans and fills the pulp chamber with biologically inert material after destruction of the pulp due to dental caries, congenital deformity or trauma. Regenerative endodontics instead seeks to replace live tissue in the pulp chamber. The ultimate goal of regenerative endodontic procedures is to regenerate the tissues and the normal function of the dentin-pulp complex.

Bacteroides caccae is a saccharolytic gram-negative bacterium from the genus Bacteroides. They are obligate anaerobes first isolated from human feces in the 1980s. Prior to their discovery, they were known as the 3452A DNA homology group. The type strain is now identified as ATCC 43185.

References

  1. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Parte, A.C. "Porphyromonas". LPSN .
  2. 1 2 "Porphyromonas". www.uniprot.org.
  3. Summanen, Paula; Finegold, Sydney M. (1 January 2015). "Porphyromonas". Bergey's Manual of Systematics of Archaea and Bacteria. John Wiley & Sons, Ltd: 1–14. doi:10.1002/9781118960608.gbm00246. ISBN   9781118960608.
  4. Parker, Charles Thomas; Wigley, Sarah; Garrity, George M (2009). Parker, Charles Thomas; Garrity, George M (eds.). "Nomenclature Abstract for Porphyromonas". The NamesforLife Abstracts. doi:10.1601/nm.8020.
  5. 1 2 3 4 5 6 7 Guilloux, Charles-Antoine; Lamoureux, Claudie; Beauruelle, Clémence; Héry-Arnaud, Geneviève (April 2021). "Porphyromonas: A neglected potential key genus in human microbiomes". Anaerobe. 68: 102230. doi:10.1016/j.anaerobe.2020.102230. ISSN   1075-9964. PMID   32615270. S2CID   220329292.
  6. 1 2 3 4 5 Acuña-Amador, Luis; Barloy-Hubler, Frédérique (December 2020). "Porphyromonas spp. have an extensive host range in ill and healthy individuals and an unexpected environmental distribution: A systematic review and meta-analysis". Anaerobe. 66: 102280. doi:10.1016/j.anaerobe.2020.102280. hdl: 10669/81718 . ISSN   1075-9964. PMID   33011277. S2CID   222169436.
  7. Wang, Kun; Lu, Wenxin; Tu, Qichao; Ge, Yichen; He, Jinzhi; Zhou, Yu; Gou, Yaping; Nostrand, Joy D Van; Qin, Yujia; Li, Jiyao; Zhou, Jizhong; Li, Yan; Xiao, Liying; Zhou, Xuedong (10 March 2016). "Preliminary analysis of salivary microbiome and their potential roles in oral lichen planus". Scientific Reports. 6 (1): 22943. Bibcode:2016NatSR...622943W. doi:10.1038/srep22943. PMC   4785528 . PMID   26961389.
  8. The Human Microbiome Project Consortium (June 2012). "Structure, function and diversity of the healthy human microbiome". Nature. 486 (7402): 207–214. Bibcode:2012Natur.486..207T. doi:10.1038/nature11234. ISSN   0028-0836. PMC   3564958 . PMID   22699609.
  9. 1 2 3 4 5 6 7 van Winkelhoff, A. J.; van Steenbergen, T. J.; de Graaff, J. (September 1992). "Porphyromonas (Bacteroides) endodontalis: its role in endodontal infections". Journal of Endodontics. 18 (9): 431–434. doi:10.1016/s0099-2399(06)80843-5. ISSN   0099-2399. PMID   9796510.
  10. Cao, H.; Qi, Z.; Jiang, H.; Zhao, J.; Liu, Z.; Tang, Z. (August 2012). "Detection of Porphyromonas endodontalis, Porphyromonas gingivalis and Prevotella intermedia in primary endodontic infections in a Chinese population". International Endodontic Journal. 45 (8): 773–781. doi:10.1111/j.1365-2591.2012.02035.x. ISSN   1365-2591. PMID   22429191.
  11. Mysak, Jaroslav; Podzimek, Stepan; Sommerova, Pavla; Lyuya-Mi, Yelena; Bartova, Jirina; Janatova, Tatjana; Prochazkova, Jarmila; Duskova, Jana (2014). "Porphyromonas gingivalis: Major Periodontopathic Pathogen Overview". Journal of Immunology Research. 2014: 476068. doi: 10.1155/2014/476068 . ISSN   2314-8861. PMC   3984870 . PMID   24741603.
  12. 1 2 van Winkelhoff, A. J.; van Steenbergen, T. J.; de Graaff, J. (September 1992). "Porphyromonas (Bacteroides) endodontalis: its role in endodontal infections". Journal of Endodontics. 18 (9): 431–434. doi:10.1016/s0099-2399(06)80843-5. ISSN   0099-2399. PMID   9796510.
  13. Ahn, J.; Sinha, R.; Pei, Z.; Dominianni, C.; Wu, J.; Shi, J.; Goedert, J. J.; Hayes, R. B.; Yang, L. (18 December 2013). "Human Gut Microbiome and Risk for Colorectal Cancer". J Natl Cancer Inst. 105 (24): 1907–1911. doi:10.1093/jnci/djt300. PMC   3866154 . PMID   24316595.
  14. Zhou, Yuhua; Lin, Feishen; Cui, Zelin; Zhang, Xiangrong; Hu, Chunmei; Shen, Tian; Chen, Chunyan; Zhang, Xia; Guo, Xiaokui (2015-05-22). "Correlation between Either Cupriavidus or Porphyromonas and Primary Pulmonary Tuberculosis Found by Analysing the Microbiota in Patients' Bronchoalveolar Lavage Fluid". PLOS ONE. 10 (5): e0124194. Bibcode:2015PLoSO..1024194Z. doi: 10.1371/journal.pone.0124194 . ISSN   1932-6203. PMC   4441454 . PMID   26000957.
  15. Galvão, Klibs N.; Bicalho, Rodrigo C.; Jeon, Soo Jin (December 2019). "Symposium review: The uterine microbiome associated with the development of uterine disease in dairy cows". Journal of Dairy Science. 102 (12): 11786–11797. doi: 10.3168/jds.2019-17106 . ISSN   0022-0302. PMID   31587913. S2CID   203848231.
  16. Gabarrini, G.; Chlebowicz, M.A.; Vega Quiroz, M.E.; Veloo, A.C.M.; Rossen, J.W.A.; Harmsen, H.J.M.; Laine, M.L.; van Dijl, J.M.; van Winkelhoff, A.J. (2018-01-03). "Conserved Citrullinating Exoenzymes inPorphyromonasSpecies". Journal of Dental Research. 97 (5): 556–562. doi:10.1177/0022034517747575. ISSN   0022-0345. PMID   29298553. S2CID   13878262.
  17. Paster, B J; Dewhirst, F E; Olsen, I; Fraser, G J (February 1994). "Phylogeny of Bacteroides, Prevotella, and Porphyromonas spp. and related bacteria". Journal of Bacteriology. 176 (3): 725–732. doi:10.1128/jb.176.3.725-732.1994. ISSN   0021-9193. PMC   205110 . PMID   8300528.

Further reading