Bacterial cellular morphologies

Last updated

Bacteria display a large diversity of cell morphologies and arrangements Bacterial morphology diagram.svg
Bacteria display a large diversity of cell morphologies and arrangements

Bacterial cellular morphologies are morphologies that are characteristic of various types bacteria and often a key factor in identifying bacteria species. Their direct examination under the light microscope enables the classification of these bacteria and archaea.

Contents

Generally, the basic morphologies are spheres (coccus) and round-ended cylinders or rod shaped (bacillus). But, there are also other morphologies such as helically twisted cylinders (example Spirochetes ), cylinders curved in one plane (selenomonads) and unusual morphologies (the square, flat box-shaped cells of the Archaean genus Haloquadratum). Other arrangements include pairs, tetrads, clusters, chains and palisades.

Types

Coccus

Arrangement of cocci bacteria Arrangement of cocci bacteria en.svg
Arrangement of cocci bacteria
:Staphylococcus bacteria Staphylococcus aureus Gram.jpg
:Staphylococcus bacteria

A coccus (plural cocci, from the Latin coccinus (scarlet) and derived from the Greek kokkos (berry)) is any microorganism (usually bacteria) [1] whose overall shape is spherical or nearly spherical. [2] Describing a bacterium as a coccus, or sphere, distinguishes it from bacillus, or rod. This is the first of many taxonomic traits for identifying and classifying a bacterium according to binomial nomenclature.

Important human diseases caused by coccoid bacteria include staphylococcal infections, some types of food poisoning, some urinary tract infections, toxic shock syndrome, gonorrhea, as well as some forms of meningitis, throat infections, pneumonias, and sinusitis. [3]

Arrangements

Coccoid bacteria often occur in characteristic arrangements and these forms have specific names as well; [4] listed here are the basic forms as well as representative bacterial genera:

Bacillus

A bacillus (plural bacilli) is a rod-shaped bacterium. Although Bacillus , capitalized and italicized, specifically refers to the genus, the word bacillus (plural bacilli) may also be used to describe any rod-shaped bacterium, and in this sense, bacilli are found in many different taxonomic groups of bacteria.

There is no connection between the shape of a bacterium and its colors in the Gram staining.

Arrangements

Bacilli usually divide in the same plane and are solitary, but can combine to form diplobacilli, streptobacilli, and palisades. [5]

  • Diplobacilli: Two bacilli arranged side by side with each other.
  • Streptobacilli: Bacilli arranged in chains. [2] [1]

Coccobacillus

Coxiella burnetii (TEM) Coxiella burnetii 01.JPG
Coxiella burnetii (TEM)

A coccobacillus (plural coccobacilli) is a type of rod-shaped bacteria. The word coccobacillus reflects an intermediate shape between coccus (spherical) and bacillus (elongated). [2] Coccobacilli rods are so short and wide that they resemble cocci. Haemophilus influenzae and Chlamydia trachomatis are coccobacilli. Aggregatibacter actinomycetemcomitans is a gram negative coccobacillus which is prevalent in subgingival plaques. Acinetobacter strains may grow on solid media as coccobacilli.

Coxiella burnetti is also a coccobacillus. [6]

Spiral

Spiral bacteria are another major bacterial cell morphology. [2] [7] Spiral bacteria can be sub-classified as spirilla, spirochetes, or vibrios based on the number of twists per cell, cell thickness, cell flexibility, and motility.

Bacteria are known to evolve specific traits to survive in their ideal environment. [8] Bacteria-caused illnesses hinge on the bacteria’s physiology and their ability to interact with their environment, including the ability to shapeshift. Researchers discovered a protein that allows the bacterium Vibrio cholerae to morph into a corkscrew shape that likely helps it twist into — and then escape — the protective mucus that lines the inside of the gut. [8]

Helical

Helicobacter species are helically-shaped the most common example is Helicobacter pylori . [9] A helical shape is seen to be better suited for movement of bacteria in a viscous medium. [10]

See also

Related Research Articles

<i>Bacillus</i> Genus of bacteria

Bacillus is a genus of Gram-positive, rod-shaped bacteria, a member of the phylum Bacillota, with 266 named species. The term is also used to describe the shape (rod) of other so-shaped bacteria; and the plural Bacilli is the name of the class of bacteria to which this genus belongs. Bacillus species can be either obligate aerobes which are dependent on oxygen, or facultative anaerobes which can survive in the absence of oxygen. Cultured Bacillus species test positive for the enzyme catalase if oxygen has been used or is present.

<span class="mw-page-title-main">Gram-positive bacteria</span> Bacteria that give a positive result in the Gram stain test

In bacteriology, gram-positive bacteria are bacteria that give a positive result in the Gram stain test, which is traditionally used to quickly classify bacteria into two broad categories according to their type of cell wall.

<span class="mw-page-title-main">Bacillota</span> Phylum of bacteria

The Bacillota are a phylum of bacteria, most of which have gram-positive cell wall structure. The renaming of phyla such as Firmicutes in 2021 remains controversial among microbiologists, many of whom continue to use the earlier names of long standing in the literature.

<span class="mw-page-title-main">Bacilli</span> Class of bacteria in the phylum Firmicutes

Bacilli is a taxonomic class of bacteria that includes two orders, Bacillales and Lactobacillales, which contain several well-known pathogens such as Bacillus anthracis. Bacilli are almost exclusively gram-positive bacteria.

<span class="mw-page-title-main">Haemophilus ducreyi</span> Species of gram-negative, pathogenic bacterium

Haemophilus ducreyi are fastidious gram-negative coccobacilli bacteria.

<span class="mw-page-title-main">Coccus</span> Round shape of certain bacteria or archaea

A coccus is any bacterium or archaeon that has a spherical, ovoid, or generally round shape. Bacteria are categorized based on their shapes into three classes: cocci (spherical-shaped), bacillus (rod-shaped) and spiral. Coccus refers to the shape of the bacteria, and can contain multiple genera, such as staphylococci or streptococci. Cocci can grow in pairs, chains, or clusters, depending on their orientation and attachment during cell division. In contrast to many bacilli-shaped bacteria, most cocci bacteria do not have flagella and are non-motile.

<i>Bacillus subtilis</i> Catalase-positive bacterium

Bacillus subtilis, known also as the hay bacillus or grass bacillus, is a Gram-positive, catalase-positive bacterium, found in soil and the gastrointestinal tract of ruminants, humans and marine sponges. As a member of the genus Bacillus, B. subtilis is rod-shaped, and can form a tough, protective endospore, allowing it to tolerate extreme environmental conditions. B. subtilis has historically been classified as an obligate aerobe, though evidence exists that it is a facultative anaerobe. B. subtilis is considered the best studied Gram-positive bacterium and a model organism to study bacterial chromosome replication and cell differentiation. It is one of the bacterial champions in secreted enzyme production and used on an industrial scale by biotechnology companies.

<span class="mw-page-title-main">Coccobacillus</span> Short rod-shaped bacteria

A coccobacillus, or bacilluscocco, is a type of bacterium with a shape intermediate between cocci and bacilli. Coccobacilli, then, are very short rods which may be mistaken for cocci.

<span class="mw-page-title-main">Diplococcus</span> Interlocked duo of cocci (e.g. Pneumococcus)

A diplococcus is a round bacterium that typically occurs in the form of two joined cells.

In microbiology, pleomorphism, also pleiomorphism, is the ability of some microorganisms to alter their morphology, biological functions or reproductive modes in response to environmental conditions. Pleomorphism has been observed in some members of the Deinococcaceae family of bacteria. The modern definition of pleomorphism in the context of bacteriology is based on variation of morphology or functional methods of the individual cell, rather than a heritable change of these characters as previously believed.

<i>Bacillus mycoides</i> Species of bacterium

Bacillus mycoides is a bacterium of the genus Bacillus. Like other Bacillus species, B. mycoides is Gram positive, rod-shaped, and forms spores. B. mycoides is distinguished from other Bacillus species by its unusual growth on agar plates, where it forms expansive hairy colonies with characteristic swirls.

<span class="mw-page-title-main">Bacteria</span> Domain of microorganisms

Bacteria are ubiquitous, mostly free-living organisms often consisting of one biological cell. They constitute a large domain of prokaryotic microorganisms. Typically a few micrometres in length, bacteria were among the first life forms to appear on Earth, and are present in most of its habitats. Bacteria inhabit soil, water, acidic hot springs, radioactive waste, and the deep biosphere of Earth's crust. Bacteria play a vital role in many stages of the nutrient cycle by recycling nutrients and the fixation of nitrogen from the atmosphere. The nutrient cycle includes the decomposition of dead bodies; bacteria are responsible for the putrefaction stage in this process. In the biological communities surrounding hydrothermal vents and cold seeps, extremophile bacteria provide the nutrients needed to sustain life by converting dissolved compounds, such as hydrogen sulphide and methane, to energy. Bacteria also live in symbiotic and parasitic relationships with plants and animals. Most bacteria have not been characterised and there are many species that cannot be grown in the laboratory. The study of bacteria is known as bacteriology, a branch of microbiology.

<span class="mw-page-title-main">Prokaryotic cytoskeleton</span> Structural filaments in prokaryotes

The prokaryotic cytoskeleton is the collective name for all structural filaments in prokaryotes. It was once thought that prokaryotic cells did not possess cytoskeletons, but advances in visualization technology and structure determination led to the discovery of filaments in these cells in the early 1990s. Not only have analogues for all major cytoskeletal proteins in eukaryotes been found in prokaryotes, cytoskeletal proteins with no known eukaryotic homologues have also been discovered. Cytoskeletal elements play essential roles in cell division, protection, shape determination, and polarity determination in various prokaryotes.

<span class="mw-page-title-main">Bacillus (shape)</span> Any rod-shaped bacterium or archaeon

A bacillus, also called a bacilliform bacterium or often just a rod, is a rod-shaped bacterium or archaeon. Bacilli are found in many different taxonomic groups of bacteria. However, the name Bacillus, capitalized and italicized, refers to a specific genus of bacteria. The name Bacilli, capitalized but not italicized, can also refer to a less specific taxonomic group of bacteria that includes two orders, one of which contains the genus Bacillus. When the word is formatted with lowercase and not italicized, 'bacillus', it will most likely be referring to shape and not to the genus at all. Bacilliform bacteria are also often simply called rods when the bacteriologic context is clear.

<span class="mw-page-title-main">Prokaryote</span> Unicellular organism lacking a membrane-bound nucleus

A prokaryote is a single-cell organism whose cell lacks a nucleus and other membrane-bound organelles. The word prokaryote comes from the Ancient Greek πρό 'before' and κάρυον 'nut, kernel'. In the two-empire system arising from the work of Édouard Chatton, prokaryotes were classified within the empire Prokaryota. But in the three-domain system, based upon molecular analysis, prokaryotes are divided into two domains: Bacteria and Archaea. Organisms with nuclei are placed in a third domain, Eukaryota.

<i>Cardiobacterium hominis</i> Species of bacterium

Cardiobacterium hominis is a Gram-negative bacillus (rod-shaped) bacterium commonly grouped with other bacteria into the HACEK group. It is one of several bacteria that is normally present in the mouth and upper part of the respiratory tract such as nose and throat. However, it may also rarely cause endocarditis, an infection of the heart valves.

Bacterial taxonomy is subfield of taxonomy devoted to the classification of bacteria specimens into taxonomic ranks.

Bacterial morphological plasticity refers to changes in the shape and size that bacterial cells undergo when they encounter stressful environments. Although bacteria have evolved complex molecular strategies to maintain their shape, many are able to alter their shape as a survival strategy in response to protist predators, antibiotics, the immune response, and other threats.

Neisseria bacilliformis is a bacterium commonly found living as a commensal in the mucous membranes of mammals. However, depending on host immunocompetence, there have been documented cases of N. bacilliformis infections of the respiratory tract and oral cavity thus making it an opportunistic pathogen. It was originally isolated from patients being treated in a cancer center. Rarely, a more serious infection such as endocarditis can occur often as a result of a predisposing condition.

Spiral bacteria, bacteria of spiral (helical) shape, form the third major morphological category of prokaryotes along with the rod-shaped bacilli and round cocci. Spiral bacteria can be subclassified by the number of twists per cell, cell thickness, cell flexibility, and motility. The two types of spiral cells are spirillum and spirochete, with spirillum being rigid with external flagella, and spirochetes being with internal flagella.

References

  1. 1 2 Cole JR (January 1990). "Diagnostic Procedure in Veterinary Bacteriology and Mycology". In Carter GR, Cole JR (eds.). 17 - Streptococcus and Related Cocci (Fifth ed.). San Diego: Academic Press. pp. 211–220. doi:10.1016/b978-0-12-161775-2.50021-9. ISBN   978-0-12-161775-2.
  2. 1 2 3 4 Zapun A, Vernet T, Pinho MG (March 2008). "The different shapes of cocci". FEMS Microbiology Reviews. 32 (2): 345–360. doi: 10.1111/j.1574-6976.2007.00098.x . PMID   18266741.
  3. Ryan KJ, Ray CG, eds. (2004). Sherris Medical Microbiology (4th ed.). McGraw Hill. ISBN   0-8385-8529-9.
  4. Salton MR, Kim KS (1996). Baron S, et al. (eds.). Structure. In: Baron's Medical Microbiology (4th ed.). Univ of Texas Medical Branch. ISBN   0-9631172-1-1. (via NCBI Bookshelf).
  5. Harry E, Monahan L, Thompson L (2006). "Bacterial cell division: the mechanism and its precision". International Review of Cytology. 253: 27–94. doi:10.1016/S0074-7696(06)53002-5. ISBN   978-0-12-373597-3. PMID   17098054.
  6. McCaul TF, Williams JC (September 1981). "Developmental cycle of Coxiella burnetii: structure and morphogenesis of vegetative and sporogenic differentiations". Journal of Bacteriology. 147 (3): 1063–1076. doi:10.1128/jb.147.3.1063-1076.1981. PMC   216147 . PMID   7275931.
  7. Young KD (September 2006). "The selective value of bacterial shape". Microbiology and Molecular Biology Reviews. 70 (3): 660–703. doi:10.1128/MMBR.00001-06. PMC   1594593 . PMID   16959965.
  8. 1 2 Tan YS, Zhang RK, Liu ZH, Li BZ, Yuan YJ (2022). "Microbial Adaptation to Enhance Stress Tolerance". Frontiers in Microbiology. 13: 888746. doi: 10.3389/fmicb.2022.888746 . PMC   9093737 . PMID   35572687.
  9. Constantino MA, Jabbarzadeh M, Fu HC, Bansil R (November 2016). "Helical and rod-shaped bacteria swim in helical trajectories with little additional propulsion from helical shape". Sci Adv. 2 (11): e1601661. doi:10.1126/sciadv.1601661. PMC   5262464 . PMID   28138539.
  10. Young KD (September 2006). "The selective value of bacterial shape". Microbiol Mol Biol Rev. 70 (3): 660–703. doi:10.1128/MMBR.00001-06. PMC   1594593 . PMID   16959965.