Neisseria cinerea

Last updated

Neisseria cinerea
Scientific classification Red Pencil Icon.png
Domain: Bacteria
Phylum: Proteobacteria
Class: Betaproteobacteria
Order: Neisseriales
Family: Neisseriaceae
Genus: Neisseria
Species:
N. cinerea
Binomial name
Neisseria cinerea
Knapp at al. 1984

Neisseria cinerea is a commensal species grouped with the Gram-negative, oxidase-positive, and catalase-positive diplococci. [1] It was first classified as Micrococcus cinereus by Alexander von Lingelsheim in 1906. Using DNA hybridization, N. cinerea exhibits 50% similarity to Neisseria gonorrhoeae . [2]

Contents

Classification

Neisseria cinerea has been formerly classified as many other organisms, including Moraxella catarrhalis and Neisseria pseudocatarrhalis. It is often mistaken for N. gonorrhoeae with which it shares morphological and biochemical traits. Both are isolated from similar infections, including endocervical and rectal infections, neonatal conjunctivitis, and lymphadenitis.N. cinerea has even been isolated on gonococcal selective media specifically made to isolate N. gonorrhoeae . [2]

Colony morphology

One important difference between N. cinerea and N. gonorrhoeae is that N. cinerea is slightly more pigmented and exhibits a golden-brown rather than a pinkish-brown pigmentation. [2] The average diameter of N. cinerea colonies varies, but stays around 1–2 mm. The colonies are convex, translucent, and glistening. No change occurs in the color of the media used to isolate N. cinerea before or after staining with Lugol's iodine. [3]

Biochemical processes

Neisseria cinerea can produce acid from glucose like N. gonorrhoeae, but it will then oxidize the acid to carbon dioxide. [2] Although it can break down glucose, it is unable to use glucose or other carbohydrates for energy, making it asaccharolytic. [1] In addition, N. cinerea will react in coagglutination serologic tests and, like N. gonorrhoeae, it produces the enzyme hydroxyprolylaminopeptidase. [2] N. cinerea does not reduce nitrate, but it does reduce nitrite. Proline, arginine, cystine, and cysteine are required for its growth. [1] N. cinerea does not react with antigonococcal protein I monoclonal antibodies and does not produce immunoglobulin A protease, unlike N. gonorrhoeae. Also unlike N. gonorrhoeae, N. cinerea is not resistant to the antibiotic colistin, and it can grow on Mueller–Hinton agar and trypticase soy agar. [1]

Disease

Neisseria cinerea is classified as a nonpathogenic bacterium, but has been isolated from numerous infections including acute meningitis. [1] Many studies indicate that N. cinerea colonizes the oropharynx and sometimes the genital tract. A few infections which could possibly be caused by N. cinerea have been reported. However, in each case, the organism was misidentified as N. flavescens, N. gonorrhoeae , or M. catarrhalis . [3]

See also

Related Research Articles

<i>Neisseria gonorrhoeae</i> Species of bacterium

Neisseria gonorrhoeae, also known as gonococcus (singular), or gonococci (plural), is a species of Gram-negative diplococci bacteria isolated by Albert Neisser in 1879. It causes the sexually transmitted genitourinary infection gonorrhea as well as other forms of gonococcal disease including disseminated gonococcemia, septic arthritis, and gonococcal ophthalmia neonatorum.

<i>Neisseria</i> Genus of bacteria

Neisseria is a large genus of bacteria that colonize the mucosal surfaces of many animals. Of the 11 species that colonize humans, only two are pathogens, N. meningitidis and N. gonorrhoeae. Most gonococcal infections are asymptomatic and self-resolving, and epidemic strains of the meningococcus may be carried in >95% of a population where systemic disease occurs at <1% prevalence.

Agar plate Petri dish with agar used to culture microbes

An agar plate is a Petri dish that contains a growth medium solidified with agar, used to culture microorganisms. Sometimes selective compounds are added to influence growth, such as antibiotics.

<i>Gardnerella vaginalis</i> Species of bacterium

Gardnerella is a genus of Gram-variable-staining facultative anaerobic bacteria of which Gardnerella vaginalis is the only species. The organisms are small non-spore-forming, nonmotile coccobacilli.

<i>Cryptococcus</i> Genus of fungi

Cryptococcus, sometimes informally called crypto, is a genus of fungi that grow in culture as yeasts. The sexual forms or teleomorphs of Cryptococcus species are filamentous fungi formerly classified in the genus Filobasidiella. The name Cryptococcus is used when referring to the yeast states of the fungi; it comes from the Greek for "hidden sphere". A few species in the Cryptococcus genus cause a disease called cryptococcosis.

Viridans streptococci

The viridans streptococci are a large group of commensal streptococcal Gram-positive bacteria species that are α-hemolytic, producing a green coloration on blood agar plates. The pseudo-taxonomic term "Streptococcus viridans" is often used to refer to this group of species, but writers who do not like to use the pseudotaxonomic term prefer the terms viridans streptococci, viridans group streptococci (VGS), or viridans streptococcal species.

<i>Moraxella catarrhalis</i> Species of bacterium

Moraxella catarrhalis is a fastidious, nonmotile, Gram-negative, aerobic, oxidase-positive diplococcus that can cause infections of the respiratory system, middle ear, eye, central nervous system, and joints of humans. It causes the infection of the host cell by sticking to the host cell using trimeric autotransporter adhesins.

<i>Staphylococcus epidermidis</i> Species of bacterium

Staphylococcus epidermidis is a Gram-positive bacterium, and one of over 40 species belonging to the genus Staphylococcus. It is part of the normal human flora, typically the skin flora, and less commonly the mucosal flora and also found in marine sponges. It is a facultative anaerobic bacteria. Although S. epidermidis is not usually pathogenic, patients with compromised immune systems are at risk of developing infection. These infections are generally hospital-acquired. S. epidermidis is a particular concern for people with catheters or other surgical implants because it is known to form biofilms that grow on these devices. Being part of the normal skin flora, S. epidermidis is a frequent contaminant of specimens sent to the diagnostic laboratory.

Diplococcus Interlocked duo of cocci (e.g. Pneumococcus)

A diplococcus is a round bacterium that typically occurs in the form of two joined cells.

<i>Burkholderia pseudomallei</i> Species of bacterium

Burkholderia pseudomallei is a Gram-negative, bipolar, aerobic, motile rod-shaped bacterium. It is a soil-dwelling bacterium endemic in tropical and subtropical regions worldwide, particularly in Thailand and northern Australia. It infects humans and other animals and causes the disease melioidosis. It is also capable of infecting plants.

<i>Elizabethkingia meningoseptica</i> Species of bacterium

Elizabethkingia meningoseptica is a Gram-negative, rod-shaped bacterium widely distributed in nature. It may be normally present in fish and frogs; it may be isolated from chronic infectious states, as in the sputum of cystic fibrosis patients. In 1959, American bacteriologist Elizabeth O. King was studying unclassified bacteria associated with pediatric meningitis at the Centers for Disease Control and Prevention in Atlanta, when she isolated an organism that she named Flavobacterium meningosepticum. In 1994, it was reclassified in the genus Chryseobacterium and renamed Chryseobacterium meningosepticum(chryseos = "golden" in Greek, so Chryseobacterium means a golden/yellow rod similar to Flavobacterium). In 2005, a 16S rRNA phylogenetic tree of Chryseobacteria showed that C. meningosepticum along with C. miricola were close to each other but outside the tree of the rest of the Chryseobacteria and were then placed in a new genus Elizabethkingia named after the original discoverer of F. meningosepticum.

Capnocytophaga is a genus of Gram-negative bacteria. Normally found in the oropharyngeal tract of mammals, they are involved in the pathogenesis of some animal bite wounds and periodontal diseases.

Thayer–Martin agar

Thayer–Martin agar is a Mueller–Hinton agar with 5% chocolate sheep blood and antibiotics. It is used for culturing and primarily isolating pathogenic Neisseria bacteria, including Neisseria gonorrhoeae and Neisseria meningitidis, as the medium inhibits the growth of most other microorganisms. When growing Neisseria meningitidis, one usually starts with a normally sterile body fluid, so a plain chocolate agar is used. Thayer–Martin agar was initially developed in 1964, with an improved formulation published in 1966.

Clostridium innocuum is an anaerobic, non-motile, gram-positive bacterium that reproduces by sporulation. While there are over 130 species of Clostridium, C. innocuum is the third most commonly isolated. Although it is not normally considered an aggressive human pathogen, it has been isolated in some disease processes. C. innocuum and other Clostridium line the oropharynx and gastrointestinal tract, and are considered normal gut flora.

<i>Clostridium tertium</i> Species of bacterium

Clostridium tertium is an anaerobic, motile, gram-positive bacterium. Although it can be considered an uncommon pathogen in humans, there has been substantial evidence of septic episodes in human beings. C. tertium is easily decolorized in Gram-stained smears and can be mistaken for a Gram-negative organism. However, C.tertium does not grow on selective media for Gram-negative organisms.

Neisseria bacilliformis is a bacterium commonly found living as a commensal in the mucous membranes of mammals. However, depending on host immunocompetence, there have been documented cases of N. bacilliformis infections of the respiratory tract and oral cavity thus making it an opportunistic pathogen. It was originally isolated from patients being treated in a cancer center. Rarely, a more serious infection such as endocarditis can occur often as a result of a predisposing condition.

Staphylococcus schleiferi is a Gram-positive, cocci-shaped bacterium of the family Staphylococcaceae. It is facultatively anaerobic, coagulase-variable, and can be readily cultured on blood agar where the bacterium tends to form opaque, non-pigmented colonies and beta (β) hemolysis. There exists two subspecies under the species S. schleiferi: Staphylococcus schleiferi subsp. schleiferi and Staphylococcus schleiferi subsp. coagulans.

New York City agar

The N.Y.C medium or GC medium agar is used for isolating Gonococci.

Granada medium

Granada medium is a selective and differential culture medium designed to selectively isolate Streptococcus agalactiae and differentiate it from other microorganisms. Granada Medium was developed by Dr. Manuel Rosa-Fraile et al. at the Service of Microbiology in the Hospital Virgen de las Nieves in Granada (Spain).

Diagnostic microbiology is the study of microbial identification. Since the discovery of the germ theory of disease, scientists have been finding ways to harvest specific organisms. Using methods such as differential media or genome sequencing, physicians and scientists can observe novel functions in organisms for more effective and accurate diagnosis of organisms. Methods used in diagnostic microbiology are often used to take advantage of a particular difference in organisms and attain information about what species it can be identified as, which is often through a reference of previous studies. New studies provide information that others can reference so that scientists can attain a basic understanding of the organism they are examining.

References

  1. 1 2 3 4 5 Knapp, J.S.; et al. (1984). "Characterization of Neisseria cinerea, a nonpathogenic species isolated on Martin-Lewis medium selective for pathogenic Neisseria spp". Journal of Clinical Microbiology. 19: 63–7. doi:10.1128/JCM.19.1.63-67.1984. PMC   270980 . PMID   6361062.
  2. 1 2 3 4 5 "Neisseria cinerea". Center for Disease Control and Prevention. 8 August 2011. Retrieved 4 November 2013.
  3. 1 2 Knapp, J.S.; E.W. Hook (1988). "Prevalence and persistence of Neisseria cinerea and other Neisseria spp. in adults". Journal of Clinical Microbiology. 26 (5): 896–900. doi: 10.1128/JCM.26.5.896-900.1988 . PMID   3384913.