Gracilicutes

Last updated

Gracilicutes
E. coli Bacteria (7316101966).jpg
Escherichia coli cells magnified 25,000 times
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Bacteria
(unranked): Gracilicutes
Gibbons and Murray 1978 [1]
Superphyla/Phyla

Various definitions, see text

Gracilicutes (Latin: gracilis, slender, and cutis, skin, referring to the cell wall) is a clade in bacterial phylogeny. [2]

Traditionally gram staining results were most commonly used as a classification tool, consequently until the advent of molecular phylogeny, the Kingdom Monera (as the domains Bacteria and Archaea were known then) was divided into four phyla, [1] [3]

This classification system was abandoned in favour of the three-domain system based on molecular phylogeny started by C. Woese. [5] [6]

Using hand-drawn schematics rather than standard molecular phylogenetic analysis, Gracilicutes was revived in 2006 by Cavalier-Smith as an infrakindgom containing the phyla Spirochaetota, Sphingobacteria (FCB), Planctobacteria (PVC), and Proteobacteria. [7] It is a gram-negative clade that branched off from other bacteria just before the evolutionary loss of the outer membrane or capsule, and just after the evolution of flagella. [7] Most notably, this author assumed an unconventional tree of life placing Chloroflexota near the origin of life and Archaea as a close relative of Actinomycetota. This taxon is not generally accepted and the three-domain system is followed. [8]

A taxon called Hydrobacteria was defined in 2009 from a molecular phylogenetic analysis of core genes. It is in contrast to the other major group of eubacteria called Terrabacteria . [9] Some researchers have used the name Gracilicutes in place of Hydrobacteria , but this does not agree with the original description of Gracilicutes by Gibbons and Murray, noted above, which included cyanobacteria and did not follow the three-domain system. Also as noted above, the use of Gracilicutes by Cavalier-Smith can be rejected because it was a major alteration of an earlier taxonomic name, was not based on a statistical analysis, and did not follow the three-domain system. The most recent genomic analyses have supported the division of Bacteria into two major superphyla, corresponding to Terrabacteria and Hydrobacteria . [10] [11]

Relationships

The phylogenetic tree according to the phylogenetic analyzes of Battistuzzi and Hedges (2009) is the following and with a molecular clock calibration. [9]

Timeline of life.png

Recent phylogenetic analyzes have found that proteobacteria are a paraphyletic phylum that could encompass several recently discovered candidate phyla and other phyla such as Acidobacteriota, Chrysiogenota, Deferribacterota, and possibly Aquificota. This suggests that Gracilicutes or Hydrobacteria as a clade may comprise several candidates more closely related to Proteobacteria, Spirochaetes, PVC group, and FCB group than to bacteria from the clade Terrabacteria . Some of these phyla were classified as part of the proteobacteria. For example, Cavalier-Smith in his proposal of the 6 kingdoms included Acidobacteriota, Aquificota, Chrysiogenota, and Deferribacterota as part of the proteobacteria. [7]

Phylogenetic analyzes have found roughly the following phylogeny between the major and some more closely related phyla. [12] [13] [14] [15]

Hydrobacteria  

According to the phylogenetic analysis of Hug (2016), the relationships could be the following. [16]

A Novel Representation Of The Tree Of Life.png

The following graph shows Cavalier-Smith's version of the tree of life, indicating the status of Gracilicutes. However, this tree is not supported by any molecular analysis so it should not be considered phylogenetic.

Cavalier-Smith's Tree of Life, 2006 [cstol 1]

 [A] 

Chlorobacteria

 [B] 

Hadobacteria

 [C] 
 [D] 

Cyanobacteria

 [E] 
 [F] Gracilicutes

Spirochaetae

Sphingobacteria (FCB)

Planctobacteria (PVC)

Proteobacteria s.l.

 [G] 

Eurybacteria

 [H] [I] 

Endobacteria (Bacillota)

 [J] 

Actinobacteria

 [K]  Neomura   
 [L] 

Archaea

 [M] 

Eukarya

Legend:
[A]
Gram-negative with a peptidoglycan cell wall like Chlorosome.
[B] Oxygenic Photosynthesis, Omp85 and four new catalases.
[C] Glycobacterial revolution: outer membrane with insertion of lipopolysaccharides, hopanoids, diaminopimelic acid, ToIC and TonB.
[D] Phycobilin chromophores.
[E] Flagella.
[F] Four sections: an amino acid in HSP60 and FtsZ and a domain in RNA polymerases β and σ.
[G] Endospores.
[H] Gram-positive Bacteria: hypertrophy of the wall peptidoglycan, sortase enzyme and a loss of the outer membrane.
[I] Glycerol 1-P dehydrogenase.
[J] Proteasome and phosphatidylinositol.
[K] Neomura revolution: Replacement of peptidoglycan by glycoproteins and lipoproteins.
[L] Reverse DNA gyrase and ether lipid isoprenoids.
[M] Phagocytosis.

  1. Cavalier-Smith T (2006). "Cell evolution and Earth history: stasis and revolution". Philos Trans R Soc Lond B Biol Sci. 361 (1470): 969–1006. doi:10.1098/rstb.2006.1842. PMC   1578732 . PMID   16754610.

Related Research Articles

<span class="mw-page-title-main">Gram-positive bacteria</span> Bacteria that give a positive result in the Gram stain test

In bacteriology, gram-positive bacteria are bacteria that give a positive result in the Gram stain test, which is traditionally used to quickly classify bacteria into two broad categories according to their type of cell wall.

The Aquificota phylum is a diverse collection of bacteria that live in harsh environmental settings. The name Aquificota was given to this phylum based on an early genus identified within this group, Aquifex, which is able to produce water by oxidizing hydrogen. They have been found in springs, pools, and oceans. They are autotrophs, and are the primary carbon fixers in their environments. These bacteria are Gram-negative, non-spore-forming rods. They are true bacteria as opposed to the other inhabitants of extreme environments, the Archaea.

The Chloroflexia are a class of bacteria in the phylum Chloroflexota. Chloroflexia are typically filamentous, and can move about through bacterial gliding. It is named after the order Chloroflexales.

<span class="mw-page-title-main">Bacteroidota</span> Phylum of Gram-negative bacteria

The phylum Bacteroidota is composed of three large classes of Gram-negative, nonsporeforming, anaerobic or aerobic, and rod-shaped bacteria that are widely distributed in the environment, including in soil, sediments, and sea water, as well as in the guts and on the skin of animals.

<span class="mw-page-title-main">Chlamydiota</span> Phylum of bacteria

The Chlamydiota are a bacterial phylum and class whose members are remarkably diverse, including pathogens of humans and animals, symbionts of ubiquitous protozoa, and marine sediment forms not yet well understood. All of the Chlamydiota that humans have known about for many decades are obligate intracellular bacteria; in 2020 many additional Chlamydiota were discovered in ocean-floor environments, and it is not yet known whether they all have hosts. Historically it was believed that all Chlamydiota had a peptidoglycan-free cell wall, but studies in the 2010s demonstrated a detectable presence of peptidoglycan, as well as other important proteins.

Mollicutes is a class of bacteria distinguished by the absence of a cell wall. The word "Mollicutes" is derived from the Latin mollis, and cutis. Individuals are very small, typically only 0.2–0.3 μm in size and have a very small genome size. They vary in form, although most have sterols that make the cell membrane somewhat more rigid. Many are able to move about through gliding, but members of the genus Spiroplasma are helical and move by twisting. The best-known genus in the Mollicutes is Mycoplasma. Colonies show the typical "fried-egg" appearance.

<span class="mw-page-title-main">Alphaproteobacteria</span> Class of bacteria

Alphaproteobacteria is a class of bacteria in the phylum Pseudomonadota. The Magnetococcales and Mariprofundales are considered basal or sister to the Alphaproteobacteria. The Alphaproteobacteria are highly diverse and possess few commonalities, but nevertheless share a common ancestor. Like all Proteobacteria, its members are gram-negative, although some of its intracellular parasitic members lack peptidoglycan and are consequently gram variable.

<span class="mw-page-title-main">Neomura</span>

Neomura is a proposed clade of biological life composed of the two domains Archaea and Eukaryota, coined by Thomas Cavalier-Smith in 2002. Its name reflects the hypothesis that both archaea and eukaryotes evolved out of the domain Bacteria, and one of the major changes was the replacement of the bacterial peptidoglycan cell walls with other glycoproteins.

<span class="mw-page-title-main">PVC superphylum</span> Superphylum of bacteria

The PVC superphylum is a superphylum of bacteria named after its three important members, Planctomycetota, Verrucomicrobiota, and Chlamydiota. Cavalier-Smith postulated that the PVC bacteria probably lost or reduced their peptidoglycan cell wall twice. It has been hypothesised that a member of the PVC clade might have been the host cell in the endosymbiotic event that gave rise to the first proto-eukaryotic cell.

<span class="mw-page-title-main">Monera</span> Biological kingdom that contains unicellular organisms with a prokaryotic cell organization

Monera is historically a biological kingdom that is made up of prokaryotes. As such, it is composed of single-celled organisms that lack a nucleus. It has been superseded by the Four-kingdom system.

Bergey's Manual of Systematic Bacteriology is the main resource for determining the identity of prokaryotic organisms, emphasizing bacterial species, using every characterizing aspect.

<span class="mw-page-title-main">Terrabacteria</span> Taxon of land bacteria

Terrabacteria is a taxon containing approximately two-thirds of prokaryote species, including those in the gram positive phyla as well as the phyla "Cyanobacteria", Chloroflexota, and Deinococcota.

<span class="mw-page-title-main">Bacterial phyla</span> Phyla or divisions of the domain Bacteria

Bacterial phyla constitute the major lineages of the domain Bacteria. While the exact definition of a bacterial phylum is debated, a popular definition is that a bacterial phylum is a monophyletic lineage of bacteria whose 16S rRNA genes share a pairwise sequence identity of ~75% or less with those of the members of other bacterial phyla.

<span class="mw-page-title-main">Bacterial taxonomy</span> Rank based classification of bacteria

Bacterial taxonomy is subfield of taxonomy devoted to the classification of bacteria specimens into taxonomic ranks.

There are several models of the Branching order of bacterial phyla, one of these was proposed in 1987 paper by Carl Woese.

There are several models of the Branching order of bacterial phyla, one of these was proposed in 2001 by Gupta based on conserved indels or protein, termed "protein signatures", an alternative approach to molecular phylogeny. Some problematic exceptions and conflicts are present to these conserved indels, however, they are in agreement with several groupings of classes and phyla. One feature of the cladogram obtained with this method is the clustering of cell wall morphology from monoderms to transitional diderms to traditional diderms.

There are several models of the Branching order of bacterial phyla, one of these was proposed in 2002 and 2004 by Thomas Cavalier-Smith. In this frame of work, the branching order of the major lineage of bacteria are determined based on some morphological characters, such as cell wall structure, and not based on the molecular evidence.

Conserved signature inserts and deletions (CSIs) in protein sequences provide an important category of molecular markers for understanding phylogenetic relationships. CSIs, brought about by rare genetic changes, provide useful phylogenetic markers that are generally of defined size and they are flanked on both sides by conserved regions to ensure their reliability. While indels can be arbitrary inserts or deletions, CSIs are defined as only those protein indels that are present within conserved regions of the protein.

<span class="mw-page-title-main">Hydrobacteria</span> Clade of bacteria

Hydrobacteria is a taxon containing approximately one-third of prokaryote species, mostly gram-negative bacteria and their relatives. It was found to be the closest relative of an even larger group of Bacteria, Terrabacteria, which are mostly gram-positive bacteria. The name Hydrobacteria refers to the moist environment inferred for the common ancestor of those species. In contrast, species of Terrabacteria possess adaptations for life on land.

References

  1. 1 2 Gibbons NE, Murray RG (January 1978). "Proposals concerning the higher taxa of bacteria". International Journal of Systematic and Evolutionary Microbiology. 28 (1): 1–6. doi: 10.1099/00207713-28-1-1 .
  2. Boussau B, Guéguen L, Gouy M (October 2008). "Accounting for horizontal gene transfers explains conflicting hypotheses regarding the position of aquificales in the phylogeny of Bacteria". BMC Evolutionary Biology. 8: 272. doi: 10.1186/1471-2148-8-272 . PMC   2584045 . PMID   18834516. Accounting for horizontal gene transfers explains conflicting hypotheses regarding the position of Aquificales in the phylogeny of Bacteria
  3. Krieg NR, Holt JC, eds. (1984). Bergey's Manual of Systematic Bacteriology. Vol. 1 (1st ed.). Baltimore: Williams and Wilkins.
  4. Murray RG (1984). "The higher taxa, or, a place for everything...?". In Krieg NR, Holt JC (eds.). Bergey's Manual of Systematic Bacteriology. Vol. 1 (1st ed.). Baltimore: Williams and Wilkins. pp. 31–34.
  5. Woese CR (June 1987). "Bacterial evolution". Microbiological Reviews. 51 (2): 221–271. doi:10.1128/MMBR.51.2.221-271.1987. PMC   373105 . PMID   2439888.
  6. Brenner DJ, Krieg NA, Staley JT (July 26, 2005) [1984(Williams & Wilkins)]. "Introductory Essays". In Garrity GM (ed.). Bergey's Manual of Systematic Bacteriology. Vol. 2A (2nd ed.). New York: Springer. p. 304. ISBN   978-0-387-24143-2. British Library no. GBA561951.
  7. 1 2 3 Cavalier-Smith T (July 2006). "Rooting the tree of life by transition analyses". Biology Direct. 1: 19. doi: 10.1186/1745-6150-1-19 . PMC   1586193 . PMID   16834776.
  8. Krieg NR, Ludwig W, Whitman WB, Hedlund BP, Paster BJ, Staley JT, et al. (November 24, 2010) [1984(Williams & Wilkins)]. "The Bacteroidetes, Spirochaetes, Tenericutes (Mollicutes), Acidobacteria, Fibrobacteres, Fusobacteria, Dictyoglomi, Gemmatimonadetes, Lentisphaerae, Verrucomicrobia, Chlamydiae, and Planctomycetes". In Garrity GM (ed.). Bergey's Manual of Systematic Bacteriology. Vol. 4 (2nd ed.). New York: Springer. p. 908. ISBN   978-0-387-95042-6. British Library no. GBA561951.
  9. 1 2 Battistuzzi FU, Hedges SB (February 2009). "A major clade of prokaryotes with ancient adaptations to life on land". Molecular Biology and Evolution. 26 (2): 335–343. doi: 10.1093/molbev/msn247 . PMID   18988685.
  10. Coleman GA, Davín AA, Mahendrarajah TA, Szánthó LL, Spang A, Hugenholtz P, et al. (May 2021). "A rooted phylogeny resolves early bacterial evolution". Science. 372 (6542): eabe0511. doi:10.1126/science.abe0511. hdl: 1983/51e9e402-36b7-47a6-91de-32b8cf7320d2 . PMID   33958449. S2CID   233872903.
  11. Léonard RR, Sauvage E, Lupo V, Perrin A, Sirjacobs D, Charlier P, et al. (February 2022). "Was the Last Bacterial Common Ancestor a Monoderm after All?". Genes. 13 (2): 376. doi: 10.3390/genes13020376 . PMC   8871954 . PMID   35205421.
  12. Anantharaman K, Brown CT, Hug LA, Sharon I, Castelle CJ, Probst AJ, et al. (October 2016). "Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system". Nature Communications. 7: 13219. Bibcode:2016NatCo...713219A. doi:10.1038/ncomms13219. PMC   5079060 . PMID   27774985.
  13. Coleman GA, Davín AA, Mahendrarajah TA, Szánthó LL, Spang A, Hugenholtz P, Szöllősi GJ, Williams TA (May 2021). "A rooted phylogeny resolves early bacterial evolution". Science. 372 (6542). New York, N.Y. doi:10.1126/science.abe0511. hdl: 1983/51e9e402-36b7-47a6-91de-32b8cf7320d2 . PMID   33958449. S2CID   233872903.
  14. Rinke C, Schwientek P, Sczyrba A, Ivanova NN, Anderson IJ, Cheng JF, et al. (July 2013). "Insights into the phylogeny and coding potential of microbial dark matter". Nature. 499 (7459): 431–437. Bibcode:2013Natur.499..431R. doi: 10.1038/nature12352 . hdl: 10453/27467 . PMID   23851394. S2CID   4394530.
  15. Zhu Q, Mai U, Pfeiffer W, Janssen S, Asnicar F, Sanders JG, et al. (December 2019). "Phylogenomics of 10,575 genomes reveals evolutionary proximity between domains Bacteria and Archaea". Nature Communications. 10 (1): 5477. Bibcode:2019NatCo..10.5477Z. doi:10.1038/s41467-019-13443-4. PMC   6889312 . PMID   31792218.
  16. Hug LA, Baker BJ, Anantharaman K, Brown CT, Probst AJ, Castelle CJ, et al. (April 2016). "A new view of the tree of life". Nature Microbiology. 1 (5): 16048. doi: 10.1038/nmicrobiol.2016.48 . PMID   27572647. S2CID   3833474.