Basal body

Last updated
Schematic of the eukaryotic flagellum. 1-axoneme, 2-cell membrane, 3-IFT (Intraflagellar transport), 4-Basal body, 5-Cross section of flagellum, 6-Triplets of microtubules of basal body. Eukarya Flagella.svg
Schematic of the eukaryotic flagellum. 1-axoneme, 2-cell membrane, 3-IFT (Intraflagellar transport), 4-Basal body, 5-Cross section of flagellum, 6-Triplets of microtubules of basal body.
Longitudinal section through the flagella area in Chlamydomonas reinhardtii. In the cell apex is the basal body that is the anchoring site for a flagellum. Basal bodies originate from and have a substructure similar to that of centrioles, with nine peripheral microtubule triplets (see structure at bottom center of image). Chlamydomonas TEM 09.jpg
Longitudinal section through the flagella area in Chlamydomonas reinhardtii . In the cell apex is the basal body that is the anchoring site for a flagellum. Basal bodies originate from and have a substructure similar to that of centrioles, with nine peripheral microtubule triplets (see structure at bottom center of image).

A basal body (synonymous with basal granule, kinetosome, and in older cytological literature with blepharoplast) is a protein structure found at the base of a eukaryotic undulipodium (cilium or flagellum). The basal body was named by Theodor Wilhelm Engelmann in 1880. [1] [2] It is formed from a centriole and several additional protein structures, and is, essentially, a modified centriole. [3] [4] The basal body serves as a nucleation site for the growth of the axoneme microtubules. Centrioles, from which basal bodies are derived, act as anchoring sites for proteins that in turn anchor microtubules, and are known as the microtubule organizing center (MTOC). These microtubules provide structure and facilitate movement of vesicles and organelles within many eukaryotic cells.

Contents

Assembly, structure

Cilia and basal bodies form during quiescence or the G1 phase of the cell cycle. Before the cell enters G1 phase, i.e. before the formation of the cilium, the mother centriole serves as a component of the centrosome.

In cells that are destined to have only one primary cilium, the mother centriole differentiates into the basal body upon entry into G1 or quiescence. Thus, the basal body in such a cell is derived from the centriole. The basal body differs from the mother centriole in at least 2 aspects. First, basal bodies have basal feet, which are anchored to cytoplasmic microtubules and are necessary for polarized alignment of the cilium. Second, basal bodies have pinwheel-shaped transition fibers that originate from the appendages of mother centriole. [5]

In multiciliated cells, however, in many cases basal bodies are not made from centrioles but are generated de novo from a special protein structure called the deuterosome. [6]

Function

During cell cycle dormancy, basal bodies organize primary cilia and reside at the cell cortex in proximity to plasma membrane. On cell cycle entry, cilia resorb and the basal body migrates to the nucleus where it functions to organize centrosomes. Centrioles, basal bodies, and cilia are important for mitosis, polarity, cell division, protein trafficking, signaling, motility and sensation. [7]

Mutations in proteins that localize to basal bodies are associated with several human ciliary diseases, including Bardet–Biedl syndrome, [8] orofaciodigital syndrome, [9] [10] Joubert syndrome, [11] cone-rod dystrophy, [12] [13] Meckel syndrome, [14] and nephronophthisis. [15]

Regulation of basal body production and spatial orientation is a function of the nucleotide-binding domain of γ-tubulin. [16]

Plants lack centrioles and only lower plants (such as mosses and ferns) with motile sperm have flagella and basal bodies. [17]

Related Research Articles

<span class="mw-page-title-main">Centriole</span> Organelle in eukaryotic cells that produces cilia and organizes the mitotic spindle

In cell biology a centriole is a cylindrical organelle composed mainly of a protein called tubulin. Centrioles are found in most eukaryotic cells, but are not present in conifers (Pinophyta), flowering plants (angiosperms) and most fungi, and are only present in the male gametes of charophytes, bryophytes, seedless vascular plants, cycads, and Ginkgo. A bound pair of centrioles, surrounded by a highly ordered mass of dense material, called the pericentriolar material (PCM), makes up a structure called a centrosome.

<span class="mw-page-title-main">Microtubule</span> Polymer of tubulin that forms part of the cytoskeleton

Microtubules are polymers of tubulin that form part of the cytoskeleton and provide structure and shape to eukaryotic cells. Microtubules can be as long as 50 micrometres, as wide as 23 to 27 nm and have an inner diameter between 11 and 15 nm. They are formed by the polymerization of a dimer of two globular proteins, alpha and beta tubulin into protofilaments that can then associate laterally to form a hollow tube, the microtubule. The most common form of a microtubule consists of 13 protofilaments in the tubular arrangement.

<span class="mw-page-title-main">Cilium</span> Organelle found on eukaryotic cells

The cilium, is a membrane-bound organelle found on most types of eukaryotic cell. Cilia are absent in bacteria and archaea. The cilium has the shape of a slender threadlike projection that extends from the surface of the much larger cell body. Eukaryotic flagella found on sperm cells and many protozoans have a similar structure to motile cilia that enables swimming through liquids; they are longer than cilia and have a different undulating motion.

<span class="mw-page-title-main">Centrosome</span> Cell organelle in animal cell helping in cell division

In cell biology, the centrosome is an organelle that serves as the main microtubule organizing center (MTOC) of the animal cell, as well as a regulator of cell-cycle progression. The centrosome provides structure for the cell. The centrosome is thought to have evolved only in the metazoan lineage of eukaryotic cells. Fungi and plants lack centrosomes and therefore use other structures to organize their microtubules. Although the centrosome has a key role in efficient mitosis in animal cells, it is not essential in certain fly and flatworm species.

The microtubule-organizing center (MTOC) is a structure found in eukaryotic cells from which microtubules emerge. MTOCs have two main functions: the organization of eukaryotic flagella and cilia and the organization of the mitotic and meiotic spindle apparatus, which separate the chromosomes during cell division. The MTOC is a major site of microtubule nucleation and can be visualized in cells by immunohistochemical detection of γ-tubulin. The morphological characteristics of MTOCs vary between the different phyla and kingdoms. In animals, the two most important types of MTOCs are 1) the basal bodies associated with cilia and flagella and 2) the centrosome associated with spindle formation.

<span class="mw-page-title-main">Axoneme</span>

An axoneme, also called an axial filament is the microtubule-based cytoskeletal structure that forms the core of a cilium or flagellum. Cilia and flagella are found on many cells, organisms, and microorganisms, to provide motility. The axoneme serves as the "skeleton" of these organelles, both giving support to the structure and, in some cases, the ability to bend. Though distinctions of function and length may be made between cilia and flagella, the internal structure of the axoneme is common to both.

<span class="mw-page-title-main">Centrin</span> Family of calcium-binding phosphoproteins

Centrins, also known as caltractins, are a family of calcium-binding phosphoproteins found in the centrosome of eukaryotes. Centrins are small calcium binding proteins that are ubiquitous centrosome components. There are about 350 “signature” proteins that are unique to eukaryotic cells but have no significant homology to proteins in archaea and bacteria. They are a type of protein that is essential and present in almost all eukaryotic cells and are found in the centrioles and pericentriolar lattice. Human centrin genes are CETN1, CETN2 and CETN3.

<span class="mw-page-title-main">CENPF</span> Centromere- and microtubule-associated protein

Centromere protein F is a protein that in humans is encoded by the CENPF gene. It is involved in chromosome segregation during cell division. It also has a role in the orientation of microtubules to form cellular cilia.

<span class="mw-page-title-main">CEP290</span> Protein-coding gene in the species Homo sapiens

Centrosomal protein of 290 kDa is a protein that in humans is encoded by the CEP290 gene. CEP290 is located on the Q arm of chromosome 12.

<span class="mw-page-title-main">CENPJ</span> Centromere- and microtubule-associated protein

Centromere protein J is a protein that in humans is encoded by the CENPJ gene. It is also known as centrosomal P4.1-associated protein (CPAP). During cell division, this protein plays a structural role in the maintenance of centrosome integrity and normal spindle morphology, and it is involved in microtubule disassembly at the centrosome. This protein can function as a transcriptional coactivator in the Stat5 signaling pathway and also as a coactivator of NF-kappaB-mediated transcription, likely via its interaction with the coactivator p300/CREB-binding protein.

<span class="mw-page-title-main">PCNT</span> Protein-coding gene in the species Homo sapiens

Pericentrin (kendrin), also known as PCNT and pericentrin-B (PCNTB), is a protein which in humans is encoded by the PCNT gene on chromosome 21. This protein localizes to the centrosome and recruits proteins to the pericentriolar matrix (PCM) to ensure proper centrosome and mitotic spindle formation, and thus, uninterrupted cell cycle progression. This gene is implicated in many diseases and disorders, including congenital disorders such as microcephalic osteodysplastic primordial dwarfism type II (MOPDII) and Seckel syndrome.

<span class="mw-page-title-main">CEP170</span> Protein-coding gene in the species Homo sapiens

Centrosomal protein 170kDa, also known as CEP170, is a protein that in humans is encoded by the CEP170 gene.

<span class="mw-page-title-main">KIAA1377</span> Protein-coding gene in the species Homo sapiens

Uncharacterized protein KIAA1377 is a protein that in humans is encoded by the KIAA1377 gene. Also known as Cep126, the protein has been shown to localize to the centrosome. Furthermore, it is found at pericentriolar satellites and the base of the primary cilium. Depleting Cep126 leads to dispersion of pericentriolar satellites, in turn disrupting microtubule organization at the mitotic spindle.

<span class="mw-page-title-main">Ciliopathy</span> Genetic disease resulting in abnormal formation or function of cilia

A ciliopathy is any genetic disorder that affects the cellular cilia or the cilia anchoring structures, the basal bodies, or ciliary function. Primary cilia are important in guiding the process of development, so abnormal ciliary function while an embryo is developing can lead to a set of malformations that can occur regardless of the particular genetic problem. The similarity of the clinical features of these developmental disorders means that they form a recognizable cluster of syndromes, loosely attributed to abnormal ciliary function and hence called ciliopathies. Regardless of the actual genetic cause, it is clustering of a set of characteristic physiological features which define whether a syndrome is a ciliopathy.

RPGRIP1L is a human gene.

<span class="mw-page-title-main">CEP164</span> Protein-coding gene in the species Homo sapiens

Centrosomal protein of 164 kDa, also known as CEP164, is a protein that in humans is encoded by the CEP164 gene. Its function appears two be twofold: CEP164 is required for primary cilium formation. Furthermore, it is an important component in the response to DNA damage by UV light.

A BBSome is a protein complex that operates in primary cilia biogenesis, homeostasis, and intraflagellar transport (IFT). The BBSome recognizes cargo proteins and signaling molecules like G-protein coupled receptors (GPCRs) on the ciliary membrane and helps transport them to and from the primary cilia. Primary cilia are nonmotile microtubule projections that function like antennae and are found in many types of cells. They receive various environmental signals to aid the cell in survival. They can detect photons by concentrating rhodopsin, a light receptor that converts photons into chemical signals, or odorants by concentrating olfactory receptors on the primary cilia surface. Primary cilia are also meaningful in cell development and signaling. They do not contain any way to make proteins within the primary cilia, so the BBSome aids in transporting essential proteins to, from, and within the cilia. Examples of cargo proteins that the BBSome is responsible for ferrying include smoothened, polycystic-1 (PC1), and several G-Protein coupled receptors (GPCRs) like somatostatin receptors (Sstr3), melanin-concentrating hormone receptor 1 (Mchr1), and neuropeptide Y2 receptor.

Ciliogenesis is defined as the building of the cell's antenna or extracellular fluid mediation mechanism. It includes the assembly and disassembly of the cilia during the cell cycle. Cilia are important organelles of cells and are involved in numerous activities such as cell signaling, processing developmental signals, and directing the flow of fluids such as mucus over and around cells. Due to the importance of these cell processes, defects in ciliogenesis can lead to numerous human diseases related to non-functioning cilia. Ciliogenesis may also play a role in the development of left/right handedness in humans.

<span class="mw-page-title-main">Tim Stearns</span> American researcher

Tim Stearns is an American biologist and university administrator, and is the Dean of Graduate and Postgraduate Studies, Vice President of Education, and Head of Laboratory at The Rockefeller University. Stearns was formerly the Frank Lee and Carol Hall Professor in the Department of Biology at Stanford University, with appointments in the Department of Genetics and the Cancer Center in the Stanford Medical School. Stearns served as chair of the Department of Biology at Stanford as well as Acting Dean of Research and Senior Associate Vice Provost of Research. Stearns is an HHMI Professor, and is a member of JASON, a scientific advisory group. He has served on the editorial boards of The Journal of Cell Biology, Genetics and Molecular Biology of the Cell.

<span class="mw-page-title-main">Strømme syndrome</span> Rare genetic condition involving intestinal atresia, eye abnormalities and microcephaly

Strømme syndrome is a very rare autosomal recessive genetic condition characterised by intestinal atresia, eye abnormalities and microcephaly. The intestinal atresia is of the "apple-peel" type, in which the remaining intestine is twisted around its main artery. The front third of the eye is typically underdeveloped, and there is usually moderate developmental delay. Less common features include an atrial septal defect, increased muscle tone or skeletal abnormalities. Physical features may include short stature, large, low-set ears, a small jaw, a large mouth, epicanthic folds, or fine, sparse hair.

References

  1. Engelmann, T. W. (1880). Zur Anatomie und Physiologie der Flimmerzellen. Pflugers Arch. 23, 505–535.
  2. Bloodgood, R. A. (2009). "From Central to Rudimentary to Primary: The History of an Underappreciated Organelle Whose Time Has Come.The Primary Cilium". Primary Cilia. Methods in Cell Biology. Vol. 94. pp. 3–52. doi:10.1016/S0091-679X(08)94001-2. ISBN   9780123750242. PMID   20362083.
  3. Schrøder, Jacob M.; Larsen, Jesper; Komarova, Yulia; Akhmanova, Anna; Thorsteinsson, Rikke I.; Grigoriev, Ilya; Manguso, Robert; Christensen, Søren T.; Pedersen, Stine F.; Geimer, Stefan; Pedersen, Lotte B. (2011). "EB1 and EB3 promote cilia biogenesis by several centrosome-related mechanisms". Journal of Cell Science. 124 (15): 2539–2551. doi:10.1242/jcs.085852. PMC   3138699 . PMID   21768326.
  4. Benjamin Lewin (2007). Cells. Jones & Bartlett Learning. p. 359. ISBN   978-0-7637-3905-8 . Retrieved 28 July 2019.
  5. Kim, S.; Dynlacht, B. D. (2013). "Assembling a primary cilium". Current Opinion in Cell Biology. 25 (4): 506–511. doi:10.1016/j.ceb.2013.04.011. PMC   3729615 . PMID   23747070.
  6. Klos Dehring, D. A.; Vladar, E. K.; Werner, M. E.; Mitchell, J. W.; Hwang, P.; Mitchell, B. J. (2013). "Deuterosome-mediated centriole biogenesis". Developmental Cell. 27 (1): 103–112. doi:10.1016/j.devcel.2013.08.021. PMC   3816757 . PMID   24075808.
  7. Pearson, C. G.; Giddings Jr, T. H.; Winey, M. (2009). "Basal body components exhibit differential protein dynamics during nascent basal body assembly". Molecular Biology of the Cell. 20 (3): 904–914. doi:10.1091/mbc.e08-08-0835. PMC   2633379 . PMID   19056680.
  8. Ansley, S. J.; Badano, J. L.; Blacque, O. E.; Hill, J.; Hoskins, B. E.; Leitch, C. C.; Kim, J. C.; Ross, A. J.; Eichers, E. R.; Teslovich, T. M.; Mah, A. K.; Johnsen, R. C.; Cavender, J. C.; Lewis, R. A.; Leroux, M. R.; Beales, P. L.; Katsanis, N. (2003). "Basal body dysfunction is a likely cause of pleiotropic Bardet-Biedl syndrome". Nature. 425 (6958): 628–633. Bibcode:2003Natur.425..628A. doi:10.1038/nature02030. PMID   14520415. S2CID   4310157.
  9. Ferrante, M. I.; Zullo, A.; Barra, A.; Bimonte, S.; Messaddeq, N.; Studer, M.; Dollé, P.; Franco, B. (2006). "Oral-facial-digital type I protein is required for primary cilia formation and left-right axis specification". Nature Genetics. 38 (1): 112–117. doi:10.1038/ng1684. PMID   16311594. S2CID   2441702.
  10. Romio, L.; Fry, A. M.; Winyard, P. J.; Malcolm, S.; Woolf, A. S.; Feather, S. A. (2004). "OFD1 is a centrosomal/Basal body protein expressed during mesenchymal-epithelial transition in human nephrogenesis". Journal of the American Society of Nephrology. 15 (10): 2556–2568. doi: 10.1097/01.ASN.0000140220.46477.5C . PMID   15466260. S2CID   22088755.
  11. Arts, H. H.; Doherty, D.; Van Beersum, S. E.; Parisi, M. A.; Letteboer, S. J.; Gorden, N. T.; Peters, T. A.; Märker, T.; Voesenek, K.; Kartono, A.; Ozyurek, H.; Farin, F. M.; Kroes, H. Y.; Wolfrum, U.; Brunner, H. G.; Cremers, F. P.; Glass, I. A.; Knoers, N. V.; Roepman, R. (2007). "Mutations in the gene encoding the basal body protein RPGRIP1L, a nephrocystin-4 interactor, cause Joubert syndrome". Nature Genetics. 39 (7): 882–888. doi:10.1038/ng2069. PMID   17558407. S2CID   12910768.
  12. Kobayashi, A.; Higashide, T.; Hamasaki, D.; Kubota, S.; Sakuma, H.; An, W.; Fujimaki, T.; McLaren, M. J.; Weleber, R. G.; Inana, G. (2000). "HRG4 (UNC119) mutation found in cone-rod dystrophy causes retinal degeneration in a transgenic model". Investigative Ophthalmology & Visual Science. 41 (11): 3268–3277. PMID   11006213.
  13. Shu, X.; Fry, A. M.; Tulloch, B.; Manson, F. D.; Crabb, J. W.; Khanna, H.; Faragher, A. J.; Lennon, A.; He, S.; Trojan, P.; Giessl, A.; Wolfrum, U.; Vervoort, R.; Swaroop, A.; Wright, A. F. (2005). "RPGR ORF15 isoform co-localizes with RPGRIP1 at centrioles and basal bodies and interacts with nucleophosmin". Human Molecular Genetics. 14 (9): 1183–1197. doi: 10.1093/hmg/ddi129 . PMID   15772089.
  14. Kyttälä, M.; Tallila, J.; Salonen, R.; Kopra, O.; Kohlschmidt, N.; Paavola-Sakki, P.; Peltonen, L.; Kestilä, M. (2006). "MKS1, encoding a component of the flagellar apparatus basal body proteome, is mutated in Meckel syndrome". Nature Genetics. 38 (2): 155–157. doi:10.1038/ng1714. PMID   16415886. S2CID   10676530.
  15. Winkelbauer, M. E.; Schafer, J. C.; Haycraft, C. J.; Swoboda, P.; Yoder, B. K. (2005). "The C. Elegans homologs of nephrocystin-1 and nephrocystin-4 are cilia transition zone proteins involved in chemosensory perception". Journal of Cell Science. 118 (Pt 23): 5575–5587. doi:10.1242/jcs.02665. PMID   16291722. S2CID   16717895.
  16. Shang, Y.; Tsao, C. C.; Gorovsky, M. A. (2005). "Mutational analyses reveal a novel function of the nucleotide-binding domain of gamma-tubulin in the regulation of basal body biogenesis". The Journal of Cell Biology. 171 (6): 1035–1044. doi:10.1083/jcb.200508184. PMC   2171320 . PMID   16344310.
  17. Philip E. Pack, Ph.D., Cliff's Notes: AP Biology 4th edition.