Chromoplasts are plastids, heterogeneous organelles responsible for pigment synthesis and storage in specific photosynthetic eukaryotes. [1] It is thought (according to symbiogenesis) that like all other plastids including chloroplasts and leucoplasts they are descended from symbiotic prokaryotes. [2]
Chromoplasts are found in fruits, flowers, roots, and stressed and aging leaves, and are responsible for their distinctive colors. This is always associated with a massive increase in the accumulation of carotenoid pigments. The conversion of chloroplasts to chromoplasts in ripening is a classic example.
They are generally found in mature tissues and are derived from preexisting mature plastids. Fruits and flowers are the most common structures for the biosynthesis of carotenoids, although other reactions occur there as well including the synthesis of sugars, starches, lipids, aromatic compounds, vitamins, and hormones. [3] The DNA in chloroplasts and chromoplasts is identical. [2] One subtle difference in DNA was found after a liquid chromatography analysis of tomato chromoplasts was conducted, revealing increased cytosine methylation. [3]
Chromoplasts synthesize and store pigments such as orange carotene, yellow xanthophylls, and various other red pigments. As such, their color varies depending on what pigment they contain. The main evolutionary purpose of chromoplasts is probably to attract pollinators or eaters of colored fruits, which help disperse seeds. However, they are also found in roots such as carrots and sweet potatoes. They allow the accumulation of large quantities of water-insoluble compounds in otherwise watery parts of plants.
When leaves change color in the autumn, it is due to the loss of green chlorophyll, which unmasks preexisting carotenoids. In this case, relatively little new carotenoid is produced—the change in plastid pigments associated with leaf senescence is somewhat different from the active conversion to chromoplasts observed in fruit and flowers.
There are some species of flowering plants that contain little to no carotenoids. In such cases, there are plastids present within the petals that closely resemble chromoplasts and are sometimes visually indistinguishable. Anthocyanins and flavonoids located in the cell vacuoles are responsible for other colors of pigment. [1]
The term "chromoplast" is occasionally used to include any plastid that has pigment, mostly to emphasize the difference between them and the various types of leucoplasts, plastids that have no pigments. In this sense, chloroplasts are a specific type of chromoplast. Still, "chromoplast" is more often used to denote plastids with pigments other than chlorophyll.
Using a light microscope chromoplasts can be differentiated and are classified into four main types. The first type is composed of proteic stroma with granules. The second is composed of protein crystals and amorphous pigment granules. The third type is composed of protein and pigment crystals. The fourth type is a chromoplast which only contains crystals. An electron microscope reveals even more, allowing for the identification of substructures such as globules, crystals, membranes, fibrils and tubules. The substructures found in chromoplasts are not found in the mature plastid that it divided from. [2]
The presence, frequency and identification of substructures using an electron microscope has led to further classification, dividing chromoplasts into five main categories: Globular chromoplasts, crystalline chromoplasts, fibrillar chromoplasts, tubular chromoplasts and membranous chromoplasts. [2] It has also been found that different types of chromoplasts can coexist in the same organ. [3] Some examples of plants in the various categories include mangoes, which have globular chromoplasts, and carrots which have crystalline chromoplasts. [4]
Although some chromoplasts are easily categorized, others have characteristics from multiple categories that make them hard to place. Tomatoes accumulate carotenoids, mainly lycopene crystalloids in membrane-shaped structures, which could place them in either the crystalline or membranous category. [3]
Plastids lining which pollinators visit a flower, as specific colors attract specific pollinators. White flowers tend to attract beetles, bees are most often attracted to violet and blue flowers, and butterflies are often attracted to warmer colors like yellows and oranges. [5]
Chromoplasts are not widely studied and are rarely the main focus of scientific research. They often play a role in research on the tomato plant ( Solanum lycopersicum ). Lycopene is responsible for the red color of a ripe fruit in the cultivated tomato, while the yellow color of the flowers is due to xanthophylls violaxanthin and neoxanthin. [6]
Carotenoid biosynthesis occurs in both chromoplasts and chloroplasts. In the chromoplasts of tomato flowers, carotenoid synthesis is regulated by the genes Psyl, Pds, Lcy-b, and Cyc-b. These genes, in addition to others, are responsible for the formation of carotenoids in organs and structures. For example, the Lcy-e gene is highly expressed in leaves, which results in the production of the carotenoid lutein. [6]
White flowers are caused by a recessive allele in tomato plants. They are less desirable in cultivated crops because they have a lower pollination rate. In one study, it was found that chromoplasts are still present in white flowers. The lack of yellow pigment in their petals and anthers is due to a mutation in the CrtR-b2 gene which disrupts the carotenoid biosynthesis pathway. [6]
The entire process of chromoplast formation is not yet completely understood on the molecular level. However, electron microscopy has revealed part of the transformation from chloroplast to chromoplast. The transformation starts with remodeling of the internal membrane system with the lysis of the intergranal thylakoids and the grana. New membrane systems form in organized membrane complexes called thylakoid plexus. The new membranes are the site of the formation of carotenoid crystals. These newly synthesized membranes do not come from the thylakoids, but rather from vesicles generated from the inner membrane of the plastid. The most obvious biochemical change would be the downregulation of photosynthetic gene expression which results in the loss of chlorophyll and stops photosynthetic activity. [3]
In oranges, the synthesis of carotenoids and the disappearance of chlorophyll causes the color of the fruit to change from green to yellow. The orange color is often added artificially—light yellow-orange is the natural color created by the actual chromoplasts. [7]
Valencia oranges Citris sinensis L are a cultivated orange grown extensively in the state of Florida. In the winter, Valencia oranges reach their optimum orange-rind color while reverting to a green color in the spring and summer. While it was originally thought that chromoplasts were the final stage of plastid development, in 1966 it was proved that chromoplasts can revert to chloroplasts, which causes the oranges to turn back to green. [7]
A chloroplast is a type of membrane-bound organelle known as a plastid that conducts photosynthesis mostly in plant and algal cells. The photosynthetic pigment chlorophyll captures the energy from sunlight, converts it, and stores it in the energy-storage molecules ATP and NADPH while freeing oxygen from water in the cells. The ATP and NADPH is then used to make organic molecules from carbon dioxide in a process known as the Calvin cycle. Chloroplasts carry out a number of other functions, including fatty acid synthesis, amino acid synthesis, and the immune response in plants. The number of chloroplasts per cell varies from one, in unicellular algae, up to 100 in plants like Arabidopsis and wheat.
The term carotene (also carotin, from the Latin carota, "carrot") is used for many related unsaturated hydrocarbon substances having the formula C40Hx, which are synthesized by plants but in general cannot be made by animals (with the exception of some aphids and spider mites which acquired the synthesizing genes from fungi). Carotenes are photosynthetic pigments important for photosynthesis. Carotenes contain no oxygen atoms. They absorb ultraviolet, violet, and blue light and scatter orange or red light, and (in low concentrations) yellow light.
Lycopene is an organic compound classified as a tetraterpene and a carotene. Lycopene is a bright red carotenoid hydrocarbon found in tomatoes and other red fruits and vegetables.
Photosynthesis is a system of biological processes by which photosynthetic organisms, such as most plants, algae, and cyanobacteria, convert light energy, typically from sunlight, into the chemical energy necessary to fuel their metabolism. Photosynthesis usually refers to oxygenic photosynthesis, a process that produces oxygen.
Photosynthetic organisms store the chemical energy so produced within intracellular organic compounds like sugars, glycogen, cellulose and starches. To use this stored chemical energy, an organism's cells metabolize the organic compounds through cellular respiration. Photosynthesis plays a critical role in producing and maintaining the oxygen content of the Earth's atmosphere, and it supplies most of the biological energy necessary for complex life on Earth.
A photosynthetic pigment is a pigment that is present in chloroplasts or photosynthetic bacteria and captures the light energy necessary for photosynthesis.
A plastid is a membrane-bound organelle found in the cells of plants, algae, and some other eukaryotic organisms. Plastids are considered to be intracellular endosymbiotic cyanobacteria.
Thylakoids are membrane-bound compartments inside chloroplasts and cyanobacteria. They are the site of the light-dependent reactions of photosynthesis. Thylakoids consist of a thylakoid membrane surrounding a thylakoid lumen. Chloroplast thylakoids frequently form stacks of disks referred to as grana. Grana are connected by intergranal or stromal thylakoids, which join granum stacks together as a single functional compartment.
Carotenoids are yellow, orange, and red organic pigments that are produced by plants and algae, as well as several bacteria, archaea, and fungi. Carotenoids give the characteristic color to pumpkins, carrots, parsnips, corn, tomatoes, canaries, flamingos, salmon, lobster, shrimp, and daffodils. Over 1,100 identified carotenoids can be further categorized into two classes – xanthophylls and carotenes.
Chloroplasts contain several important membranes, vital for their function. Like mitochondria, chloroplasts have a double-membrane envelope, called the chloroplast envelope, but unlike mitochondria, chloroplasts also have internal membrane structures called thylakoids. Furthermore, one or two additional membranes may enclose chloroplasts in organisms that underwent secondary endosymbiosis, such as the euglenids and chlorarachniophytes.
Xanthophylls are yellow pigments that occur widely in nature and form one of two major divisions of the carotenoid group; the other division is formed by the carotenes. The name is from Greek: xanthos (ξανθός), meaning "yellow", and phyllon (φύλλον), meaning "leaf"), due to their formation of the yellow band seen in early chromatography of leaf pigments.
Fucoxanthin is a xanthophyll, with formula C42H58O6. It is found as an accessory pigment in the chloroplasts of brown algae and most other heterokonts, giving them a brown or olive-green color. Fucoxanthin absorbs light primarily in the blue-green to yellow-green part of the visible spectrum, peaking at around 510-525 nm by various estimates and absorbing significantly in the range of 450 to 540 nm.
Etioplasts are an intermediate type of plastid that develop from proplastids that have not been exposed to light, and convert into chloroplasts upon exposure to light. They are usually found in stem and leaf tissue of flowering plants (Angiosperms) grown either in complete darkness, or in extremely low-light conditions.
Biological pigments, also known simply as pigments or biochromes, are substances produced by living organisms that have a color resulting from selective color absorption. Biological pigments include plant pigments and flower pigments. Many biological structures, such as skin, eyes, feathers, fur and hair contain pigments such as melanin in specialized cells called chromatophores. In some species, pigments accrue over very long periods during an individual's lifespan.
Proteinoplasts are specialized organelles found only in plant cells. Proteinoplasts belong to a broad category of organelles known as plastids. Plastids are specialized double-membrane organelles found in plant cells. Plastids perform a variety of functions such as metabolism of energy, and biological reactions. There are multiple types of plastids recognized including Leucoplasts, Chromoplasts, and Chloroplasts. Plastids are broken up into different categories based on characteristics such as size, function and physical traits. Chromoplasts help to synthesize and store large amounts of carotenoids. Chloroplasts are photosynthesizing structures that help to make light energy for the plant. Leucoplasts are a colorless type of plastid which means that no photosynthesis occurs here. The colorless pigmentation of the leucoplast is due to not containing the structural components of thylakoids unlike what is found in chloroplasts and chromoplasts that gives them their pigmentation. From leucoplasts stems the subtype, proteinoplasts, which contain proteins for storage. They contain crystalline bodies of protein and can be the sites of enzyme activity involving those proteins. Proteinoplasts are found in many seeds, such as brazil nuts, peanuts and pulses. Although all plastids contain high concentrations of protein, proteinoplasts were identified in the 1960s and 1970s as having large protein inclusions that are visible with both light microscopes and electron microscopes. Other subtypes of Leucoplasts include amyloplast, and elaioplasts. Amyloplasts help to store and synthesize starch molecules found in plants, while elaioplasts synthesize and store lipids in plant cells.
Ochrophytes, also known as heterokontophytes or stramenochromes, are a group of algae. They are the photosynthetic stramenopiles, a group of eukaryotes, organisms with a cell nucleus, characterized by the presence of two unequal flagella, one of which has tripartite hairs called mastigonemes. In particular, they are characterized by photosynthetic organelles or plastids enclosed by four membranes, with membrane-bound compartments called thylakoids organized in piles of three, chlorophyll a and c as their photosynthetic pigments, and additional pigments such as β-carotene and xanthophylls. Ochrophytes are one of the most diverse lineages of eukaryotes, containing ecologically important algae such as brown algae and diatoms. They are classified either as phylum Ochrophyta or Heterokontophyta, or as subphylum Ochrophytina within phylum Gyrista. Their plastids are of red algal origin.
Vaucheria litorea is a species of yellow-green algae (Xanthophyceae). It grows in a filamentous fashion. V. litorea is a common intertidal species of coastal brackish waters and salt marshes of the Northern Atlantic, along the coasts of Europe, North America and New Zealand. It is also found in the Eastern Pacific coasts of Washington state. It is found to be able to tolerate a large range of salinities, making it euryhaline.
Antheraxanthin is a bright yellow accessory pigment found in many organisms that perform photosynthesis. It is a xanthophyll cycle pigment, an oil-soluble alcohol within the xanthophyll subgroup of carotenoids. Antheraxanthin is both a component in and product of the cellular photoprotection mechanisms in photosynthetic green algae, red algae, euglenoids, and plants.
15-cis-phytoene desaturases, are enzymes involved in the carotenoid biosynthesis in plants and cyanobacteria. Phytoene desaturases are membrane-bound enzymes localized in plastids and introduce two double bonds into their colorless substrate phytoene by dehydrogenation and isomerize two additional double bonds. This reaction starts a biochemical pathway involving three further enzymes called the poly-cis pathway and leads to the red colored lycopene. The homologous phytoene desaturase found in bacteria and fungi (CrtI) converts phytoene directly to lycopene by an all-trans pathway.
Lycopene β-cyclase is an enzyme with systematic name carotenoid beta-end group lyase (decyclizing). This enzyme catalyses the following chemical reaction
Myxoxanthophyll is a carotenoid glycoside pigment present in the photosynthetic apparatus of cyanobacteria. It is named after the word "Myxophyceae", a former term for cyanobacteria. As a monocyclic xanthophyll, it has a yellowish color. It is required for normal cell wall structure and thylakoid organization in the cyanobacterium Synechocystis. The pigment is unusual because it is glycosylated on the 2'-OH rather than the 1'-OH position of the molecule. Myxoxanthophyll was first isolated from Oscillatoria rubenscens in 1936.
{{cite book}}
: |journal=
ignored (help)