Replicon (genetics)

Last updated

A replicon is a region of an organism's genome that is independently replicated from a single origin of replication [ citation needed ]. A bacterial chromosome contains a single origin, and therefore the whole bacterial chromosome is a replicon. The chromosomes of archaea and eukaryotes can have multiple origins of replication, and so their chromosomes may consist of several replicons[ citation needed ]. The concept of the replicon was formulated in 1963 by François Jacob, Sydney Brenner, and Jacques Cuzin as a part of their replicon model for replication initiation. According to the replicon model, two components control replication initiation: the replicator and the initiator. The replicator is the entire DNA sequence (including, but not limited to the origin of replication) required to direct the initiation of DNA replication. The initiator is the protein that recognizes the replicator and activates replication initiation. [1]

Contents

Sometimes in bacteriology, the term "replicon" is only used to refer to chromosomes containing a single origin of replication and therefore excludes the genomes of archaea and eukaryotes which can have several origins. [2]

Prokaryotes

For most prokaryotic chromosomes, the replicon is the entire chromosome. One notable exception comes from archaea, where two Sulfolobus species have been shown to contain three replicons. Examples of bacterial species that have been found to possess multiple replicons include Rhodobacter sphaeroides (two), Vibrio cholerae , [3] and Burkholderia multivorans (three). These "secondary" (or tertiary) chromosomes are often described as molecules that are intermediate between a true chromosome and a plasmid and are sometimes called "chromids". Various Azospirillum species possess seven replicons; A. lipoferum , for instance, has one bacterial chromosome, five chromids, and one plasmid. [4] Plasmids and bacteriophages are usually replicated as single replicons, but large plasmids in Gram-negative bacteria have been shown to carry several replicons. [5]

Eukaryotes

For eukaryotic chromosomes, there are multiple replicons per chromosome. Known examples range in size from 10 to 330 kilobases. A cluster of replicons replicates simultaneously. But different clusters start replicating at different times during S phase, depending on their location along the chromosomes. In general, clusters nearer the centromere replicate earlier. Fine structure analysis of chromosomal origins of replication is limited to a single model eukaryote, Saccharomyces cerevisiae. Therefore, no general picture of a replicon as replicator and initiator in eukaryotes has been achieved.

In the case of mitochondria, the definition of replicons is somewhat confused, as they use unidirectional replication with two separate origins.

Non-cellular entities

Non-cellular entities such as viruses, plasmids, transposons, retrotransposons, viroids, virusoids and RNA satellites are also replicons. Patrick Forterre of the Pasteur Institute has coined the term "orphan replicon" to refer to those that are not viruses; i.e., that lack a capsid. [6]

See also

Related Research Articles

<span class="mw-page-title-main">Bacterial conjugation</span> Method of bacterial gene transfer

Bacterial conjugation is the transfer of genetic material between bacterial cells by direct cell-to-cell contact or by a bridge-like connection between two cells. This takes place through a pilus. It is a parasexual mode of reproduction in bacteria.

<span class="mw-page-title-main">DNA replication</span> Biological process

In molecular biology, DNA replication is the biological process of producing two identical replicas of DNA from one original DNA molecule. DNA replication occurs in all living organisms acting as the most essential part of biological inheritance. This is essential for cell division during growth and repair of damaged tissues, while it also ensures that each of the new cells receives its own copy of the DNA. The cell possesses the distinctive property of division, which makes replication of DNA essential.

<span class="mw-page-title-main">Plasmid</span> Small DNA molecule within a cell

A plasmid is a small, extrachromosomal DNA molecule within a cell that is physically separated from chromosomal DNA and can replicate independently. They are most commonly found as small circular, double-stranded DNA molecules in bacteria; however, plasmids are sometimes present in archaea and eukaryotic organisms. In nature, plasmids often carry genes that benefit the survival of the organism and confer selective advantage such as antibiotic resistance. While chromosomes are large and contain all the essential genetic information for living under normal conditions, plasmids are usually very small and contain only additional genes that may be useful in certain situations or conditions. Artificial plasmids are widely used as vectors in molecular cloning, serving to drive the replication of recombinant DNA sequences within host organisms. In the laboratory, plasmids may be introduced into a cell via transformation. Synthetic plasmids are available for procurement over the internet.

DNA primase is an enzyme involved in the replication of DNA and is a type of RNA polymerase. Primase catalyzes the synthesis of a short RNA segment called a primer complementary to a ssDNA template. After this elongation, the RNA piece is removed by a 5' to 3' exonuclease and refilled with DNA.

<span class="mw-page-title-main">Origin of replication</span> Sequence in a genome

The origin of replication is a particular sequence in a genome at which replication is initiated. Propagation of the genetic material between generations requires timely and accurate duplication of DNA by semiconservative replication prior to cell division to ensure each daughter cell receives the full complement of chromosomes. This can either involve the replication of DNA in living organisms such as prokaryotes and eukaryotes, or that of DNA or RNA in viruses, such as double-stranded RNA viruses. Synthesis of daughter strands starts at discrete sites, termed replication origins, and proceeds in a bidirectional manner until all genomic DNA is replicated. Despite the fundamental nature of these events, organisms have evolved surprisingly divergent strategies that control replication onset. Although the specific replication origin organization structure and recognition varies from species to species, some common characteristics are shared.

<span class="mw-page-title-main">Transduction (genetics)</span> Transfer process in genetics

Transduction is the process by which foreign DNA is introduced into a cell by a virus or viral vector. An example is the viral transfer of DNA from one bacterium to another and hence an example of horizontal gene transfer. Transduction does not require physical contact between the cell donating the DNA and the cell receiving the DNA, and it is DNase resistant. Transduction is a common tool used by molecular biologists to stably introduce a foreign gene into a host cell's genome.

Viral eukaryogenesis is the hypothesis that the cell nucleus of eukaryotic life forms evolved from a large DNA virus in a form of endosymbiosis within a methanogenic archaeon or a bacterium. The virus later evolved into the eukaryotic nucleus by acquiring genes from the host genome and eventually usurping its role. The hypothesis was first proposed by Philip Bell in 2001 and was further popularized with the discovery of large, complex DNA viruses that are capable of protein biosynthesis.

The F-plasmid allows genes to be transferred from one bacterium carrying the factor to another bacterium lacking the factor by conjugation. The F factor was the first plasmid to be discovered. Unlike other plasmids, F factor is constitutive for transfer proteins due to a mutation in the gene finO. The F plasmid belongs to F-like plasmids, a class of conjugative plasmids that control sexual functions of bacteria with a fertility inhibition (Fin) system.

Microbial genetics is a subject area within microbiology and genetic engineering. Microbial genetics studies microorganisms for different purposes. The microorganisms that are observed are bacteria, and archaea. Some fungi and protozoa are also subjects used to study in this field. The studies of microorganisms involve studies of genotype and expression system. Genotypes are the inherited compositions of an organism. Genetic Engineering is a field of work and study within microbial genetics. The usage of recombinant DNA technology is a process of this work. The process involves creating recombinant DNA molecules through manipulating a DNA sequence. That DNA created is then in contact with a host organism. Cloning is also an example of genetic engineering.

A P1-derived artificial chromosome, or PAC, is a DNA construct derived from the DNA of P1 bacteriophages and Bacterial artificial chromosome. It can carry large amounts of other sequences for a variety of bioengineering purposes in bacteria. It is one type of the efficient cloning vector used to clone DNA fragments in Escherichia coli cells.

In molecular cloning, a vector is any particle used as a vehicle to artificially carry a foreign nucleic sequence – usually DNA – into another cell, where it can be replicated and/or expressed. A vector containing foreign DNA is termed recombinant DNA. The four major types of vectors are plasmids, viral vectors, cosmids, and artificial chromosomes. Of these, the most commonly used vectors are plasmids. Common to all engineered vectors are an origin of replication, a multicloning site, and a selectable marker.

<span class="mw-page-title-main">Prokaryote</span> Unicellular organism that lacks a membrane-bound nucleus

A prokaryote is a single-cell organism whose cell lacks a nucleus and other membrane-bound organelles. The word prokaryote comes from the Ancient Greek πρό 'before' and κάρυον 'nut, kernel'. In the two-empire system arising from the work of Édouard Chatton, prokaryotes were classified within the empire Prokaryota. But in the three-domain system, based upon molecular analysis, prokaryotes are divided into two domains: Bacteria and Archaea. Organisms with nuclei are placed in a third domain, Eukaryota.

<span class="mw-page-title-main">Circular chromosome</span> Type of chromosome

A circular chromosome is a chromosome in bacteria, archaea, mitochondria, and chloroplasts, in the form of a molecule of circular DNA, unlike the linear chromosome of most eukaryotes.

The CTXφ bacteriophage is a filamentous bacteriophage. It is a positive-strand DNA virus with single-stranded DNA (ssDNA).

Yingchengvirus is a genus of double stranded DNA viruses that infect haloarchaea. The genus was previously named Betasphaerolipovirus.

The bacterial, archaeal and plant plastid code is the DNA code used by bacteria, archaea, prokaryotic viruses and chloroplast proteins. It is essentially the same as the standard code, however there are some variations in alternative start codons.

<i>Monodnaviria</i> Realm of viruses

Monodnaviria is a realm of viruses that includes all single-stranded DNA viruses that encode an endonuclease of the HUH superfamily that initiates rolling circle replication of the circular viral genome. Viruses descended from such viruses are also included in the realm, including certain linear single-stranded DNA (ssDNA) viruses and circular double-stranded DNA (dsDNA) viruses. These atypical members typically replicate through means other than rolling circle replication.

<i>Varidnaviria</i> Realm of viruses

Varidnaviria is a realm of viruses that includes all DNA viruses that encode major capsid proteins that contain a vertical jelly roll fold. The major capsid proteins (MCP) form into pseudohexameric subunits of the viral capsid, which stores the viral deoxyribonucleic acid (DNA), and are perpendicular, or vertical, to the surface of the capsid. Apart from this, viruses in the realm also share many other characteristics, such as minor capsid proteins (mCP) with the vertical jelly roll fold, an ATPase that packages viral DNA into the capsid, and a DNA polymerase that replicates the viral genome.

<span class="mw-page-title-main">Archaeal virus</span>

An archaeal virus is a virus that infects and replicates in archaea, a domain of unicellular, prokaryotic organisms. Archaeal viruses, like their hosts, are found worldwide, including in extreme environments inhospitable to most life such as acidic hot springs, highly saline bodies of water, and at the bottom of the ocean. They have been also found in the human body. The first known archaeal virus was described in 1974 and since then, a large diversity of archaeal viruses have been discovered, many possessing unique characteristics not found in other viruses. Little is known about their biological processes, such as how they replicate, but they are believed to have many independent origins, some of which likely predate the last archaeal common ancestor (LACA).

Chromids, formerly secondary chromosomes, are a class of bacterial replicons. These replicons are called "chromids" because they have characteristic features of both chromosomes and plasmids. Early on, it was thought that all core genes could be found on the main chromosome of the bacteria. However, in 1989 a replicon was discovered containing core genes outside of the main chromosome. These core genes make the chromid indispensable to the organism. Chromids are large replicons, although not as large as the main chromosome. However, chromids are almost always larger than a plasmid. Chromids also share many genomic signatures of the chromosome, including their GC-content and their codon usage bias. On the other hand, chromids do not share the replication systems of chromosomes. Instead, they use the replication system of plasmids. Chromids are present in 10% of bacteria species sequenced by 2009.

References

  1. Watson JD (2014). Molecular Biology of the Gene (7 ed.). Boston: Cold Spring Harbor Laboratory Press. pp. 288–289. ISBN   978-0-321-76243-6. OCLC   824087979.
  2. diCenzo GC, Finan TM (September 2017). "The Divided Bacterial Genome: Structure, Function, and Evolution". Microbiology and Molecular Biology Reviews. 81 (3). doi:10.1128/MMBR.00019-17. PMC   5584315 . PMID   28794225.
  3. Tagomori K, Iida T, Honda T (August 2002). "Comparison of genome structures of vibrios, bacteria possessing two chromosomes". Journal of Bacteriology. 184 (16): 4351–4358. doi:10.1128/JB.184.16.4351-4358.2002. PMC   135242 . PMID   12142404.
  4. Wisniewski-Dyé F, Borziak K, Khalsa-Moyers G, Alexandre G, Sukharnikov LO, Wuichet K, et al. (December 2011). Richardson PM (ed.). "Azospirillum genomes reveal transition of bacteria from aquatic to terrestrial environments". PLOS Genetics. 7 (12): e1002430. doi: 10.1371/journal.pgen.1002430 . PMC   3245306 . PMID   22216014.
  5. Thomas CM (2000-05-01). Horizontal Gene Pool: Bacterial Plasmids and Gene Spread (1 ed.). CRC Press. ISBN   9057024624.
  6. Raoult D, Forterre P (April 2008). "Redefining viruses: lessons from Mimivirus". Nature Reviews. Microbiology. 6 (4): 315–319. doi:10.1038/nrmicro1858. PMID   18311164. S2CID   24447407.