RFC1

Last updated
RFC1
Protein RFC1 PDB 2EBU.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases RFC1 , RFC, replication factor C subunit 1, A1, PO-GA, RECC1, MHCBFB, RFC140, CANVAS
External IDs OMIM: 102579 MGI: 97891 HomoloGene: 2187 GeneCards: RFC1
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001204747
NM_002913
NM_001363495
NM_001363496

NM_011258
NM_001347357
NM_001347358

RefSeq (protein)

NP_001191676
NP_002904
NP_001350424
NP_001350425

NP_001334286
NP_001334287
NP_035388

Location (UCSC) Chr 4: 39.29 – 39.37 Mb Chr 5: 65.42 – 65.49 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Replication factor C subunit 1 is a protein that in humans is encoded by the RFC1 gene. [5] [6]

Contents

Function

The protein encoded by this gene is the large subunit of replication factor C, which is a five subunit DNA polymerase accessory protein. Replication factor C is a DNA-dependent ATPase that is required for eukaryotic DNA replication and repair. The protein acts as an activator of DNA polymerases, binds to the 3' end of primers, and promotes coordinated synthesis of both strands. It also may have a role in telomere stability. [6]

Interactions

RFC1 has been shown to interact with:

Clinical relevance

Biallelic intronic repeat expansions (a series of repeating nucleotide sequences) in the replication factor C subunit 1 (RFC1) gene causes cerebellar ataxia, neuropathy and vestibular areflexia syndrome (CANVAS). [17] Within the poly(A) tail of an AluSx3 element in RFC1, there are eleven repeats of the pentanucleotide "AAAAG". Repeat expansion and polymorphic configuration are observed in part of the population, with increased number of repeats associated to alternative "AAAGG", "AAGGG" and "ACAGG" pentanucleotides. [18] In particular, biallelic "AAGGG" and "ACAGG" repeat expansion have disproportionately been observed in patients with CANVAS. Biallelic "AAGGG" repeat expansion is also reported in a high number of sporadic cases of late-onset ataxia, [17] isolate sensory neuropathy [19] [20] and, less frequently, isolate cerebellar ataxia. [21] Due to a diagnostic overlap with CANVAS, researchers have also investigated the presence of RFC1 expansions in pathologically confirmed multiple system atrophy (MSA) but found a similar alteration frequency (0.7%) to a healthy population, suggesting RFC1 does not have a role in this disease. [22]

Mutant biallelic intronic repeat expansions do not affect RFC1 expression in patient peripheral and brain tissue, suggesting no overt loss of function of this gene. [17]

In patients with the pathogenic RFC1 expansion, sensory neuropathy appears to be a predominant feature and patients may also present with symptoms such as cerebellar dysfunction, vestibular involvement and a dry spasmodic cough therefore, genetic testing is recommended in those with these symptoms. [23]

Related Research Articles

The replication factor C, or RFC, is a five-subunit protein complex that is required for DNA replication.

<span class="mw-page-title-main">Proliferating cell nuclear antigen</span> Mammalian protein found in Homo sapiens

Proliferating cell nuclear antigen (PCNA) is a DNA clamp that acts as a processivity factor for DNA polymerase δ in eukaryotic cells and is essential for replication. PCNA is a homotrimer and achieves its processivity by encircling the DNA, where it acts as a scaffold to recruit proteins involved in DNA replication, DNA repair, chromatin remodeling and epigenetics.

<span class="mw-page-title-main">DNA clamp</span>

A DNA clamp, also known as a sliding clamp, is a protein complex that serves as a processivity-promoting factor in DNA replication. As a critical component of the DNA polymerase III holoenzyme, the clamp protein binds DNA polymerase and prevents this enzyme from dissociating from the template DNA strand. The clamp-polymerase protein–protein interactions are stronger and more specific than the direct interactions between the polymerase and the template DNA strand; because one of the rate-limiting steps in the DNA synthesis reaction is the association of the polymerase with the DNA template, the presence of the sliding clamp dramatically increases the number of nucleotides that the polymerase can add to the growing strand per association event. The presence of the DNA clamp can increase the rate of DNA synthesis up to 1,000-fold compared with a nonprocessive polymerase.

<span class="mw-page-title-main">Ku70</span> Protein-coding gene in the species Homo sapiens

Ku70 is a protein that, in humans, is encoded by the XRCC6 gene.

<span class="mw-page-title-main">RAD9A</span> Protein-coding gene in the species Homo sapiens

Cell cycle checkpoint control protein RAD9A is a protein that in humans is encoded by the RAD9A gene.Rad9 has been shown to induce G2 arrest in the cell cycle in response to DNA damage in yeast cells. Rad9 was originally found in budding yeast cells but a human homolog has also been found and studies have suggested that the molecular mechanisms of the S and G2 checkpoints are conserved in eukaryotes. Thus, what is found in yeast cells are likely to be similar in human cells.

<span class="mw-page-title-main">CUL4A</span> Protein-coding gene in humans

Cullin-4A is a protein that in humans is encoded by the CUL4A gene. CUL4A belongs to the cullin family of ubiquitin ligase proteins and is highly homologous to the CUL4B protein. CUL4A regulates numerous key processes such as DNA repair, chromatin remodeling, spermatogenesis, haematopoiesis and the mitotic cell cycle. As a result, CUL4A has been implicated in several cancers and the pathogenesis of certain viruses including HIV. A component of a CUL4A complex, Cereblon, was discovered to be a major target of the teratogenic agent thalidomide.

<span class="mw-page-title-main">GABPA</span> Protein-coding gene in the species Homo sapiens

GA-binding protein alpha chain is a protein that in humans is encoded by the GABPA gene.

<span class="mw-page-title-main">HUS1</span> Protein-coding gene in the species Homo sapiens

Checkpoint protein HUS1 is a protein that in humans is encoded by the HUS1 gene.

<span class="mw-page-title-main">Flap structure-specific endonuclease 1</span> Protein-coding gene in the species Homo sapiens

Flap endonuclease 1 is an enzyme that in humans is encoded by the FEN1 gene.

<span class="mw-page-title-main">Cyclin O</span> Protein-coding gene in the species Homo sapiens

Cyclin-O is a protein that in humans is encoded by the CCNO gene.

<span class="mw-page-title-main">RFC4</span> Protein-coding gene in the species Homo sapiens

Replication factor C subunit 4 is a protein that in humans is encoded by the RFC4 gene.

<span class="mw-page-title-main">RFC2</span> Protein-coding gene in the species Homo sapiens

Replication factor C subunit 2 is a protein that in humans is encoded by the RFC2 gene.

<span class="mw-page-title-main">POLD1</span> Protein-coding gene in the species Homo sapiens

The gene polymerase delta 1 (POLD1) encodes the large, POLD1/p125, catalytic subunit of the DNA polymerase delta (Polδ) complex. The Polδ enzyme is responsible for synthesizing the lagging strand of DNA, and has also been implicated in some activities at the leading strand. The POLD1/p125 subunit encodes both DNA polymerizing and exonuclease domains, which provide the protein an important second function in proofreading to ensure replication accuracy during DNA synthesis, and in a number of types of replication-linked DNA repair following DNA damage.

<span class="mw-page-title-main">RFC3</span> Protein-coding gene in the species Homo sapiens

Replication factor C subunit 3 is a protein that in humans is encoded by the RFC3 gene.

<span class="mw-page-title-main">RFC5</span> Protein-coding gene in the species Homo sapiens

Replication factor C subunit 5 is a protein that in humans is encoded by the RFC5 gene.

<span class="mw-page-title-main">EIF3D</span> Protein-coding gene in the species Homo sapiens

Eukaryotic translation initiation factor 3 subunit D (eIF3d) is a protein that in humans is encoded by the EIF3D gene.

<span class="mw-page-title-main">POLD3</span> Protein-coding gene in the species Homo sapiens

DNA polymerase delta subunit 3 is an enzyme that in humans is encoded by the POLD3 gene. It is a component of the DNA polymerase delta complex.

<span class="mw-page-title-main">CHTF18</span> Protein-coding gene in the species Homo sapiens

Chromosome transmission fidelity protein 18 homolog is a protein that in humans is encoded by the CHTF18 gene.

<span class="mw-page-title-main">ORC1</span> Protein-coding gene in the species Homo sapiens

Origin recognition complex subunit 1 is a protein that in humans is encoded by the ORC1 gene. It is closely related to CDC6, and both are the same protein in archaea.

<span class="mw-page-title-main">Replication protein A2</span> Protein-coding gene in the species Homo sapiens

Replication protein A 32 kDa subunit is a protein that in humans is encoded by the RPA2 gene.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000035928 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000029191 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Luckow B, Bunz F, Stillman B, Lichter P, Schütz G (March 1994). "Cloning, expression, and chromosomal localization of the 140-kilodalton subunit of replication factor C from mice and humans". Molecular and Cellular Biology. 14 (3): 1626–34. doi:10.1128/mcb.14.3.1626. PMC   358521 . PMID   8114700.
  6. 1 2 "Entrez Gene: RFC1 replication factor C (activator 1) 1, 145kDa".
  7. 1 2 Maruyama T, Farina A, Dey A, Cheong J, Bermudez VP, Tamura T, et al. (September 2002). "A Mammalian bromodomain protein, brd4, interacts with replication factor C and inhibits progression to S phase". Molecular and Cellular Biology. 22 (18): 6509–20. doi:10.1128/mcb.22.18.6509-6520.2002. PMC   135621 . PMID   12192049.
  8. Anderson LA, Perkins ND (August 2002). "The large subunit of replication factor C interacts with the histone deacetylase, HDAC1". The Journal of Biological Chemistry. 277 (33): 29550–4. doi: 10.1074/jbc.M200513200 . PMID   12045192.
  9. Fotedar R, Mossi R, Fitzgerald P, Rousselle T, Maga G, Brickner H, et al. (August 1996). "A conserved domain of the large subunit of replication factor C binds PCNA and acts like a dominant negative inhibitor of DNA replication in mammalian cells". The EMBO Journal. 15 (16): 4423–33. doi:10.1002/j.1460-2075.1996.tb00815.x. PMC   452166 . PMID   8861969.
  10. Mossi R, Jónsson ZO, Allen BL, Hardin SH, Hübscher U (January 1997). "Replication factor C interacts with the C-terminal side of proliferating cell nuclear antigen". The Journal of Biological Chemistry. 272 (3): 1769–76. doi: 10.1074/jbc.272.3.1769 . PMID   8999859.
  11. van der Kuip H, Carius B, Haque SJ, Williams BR, Huber C, Fischer T (April 1999). "The DNA-binding subunit p140 of replication factor C is upregulated in cycling cells and associates with G1 phase cell cycle regulatory proteins". Journal of Molecular Medicine. 77 (4): 386–92. doi:10.1007/s001090050365. PMID   10353443. S2CID   22183443.
  12. Ohta S, Shiomi Y, Sugimoto K, Obuse C, Tsurimoto T (October 2002). "A proteomics approach to identify proliferating cell nuclear antigen (PCNA)-binding proteins in human cell lysates. Identification of the human CHL12/RFCs2-5 complex as a novel PCNA-binding protein". The Journal of Biological Chemistry. 277 (43): 40362–7. doi: 10.1074/jbc.M206194200 . PMID   12171929.
  13. Anderson LA, Perkins ND (January 2003). "Regulation of RelA (p65) function by the large subunit of replication factor C". Molecular and Cellular Biology. 23 (2): 721–32. doi:10.1128/mcb.23.2.721-732.2003. PMC   151544 . PMID   12509469.
  14. Ellison V, Stillman B (March 1998). "Reconstitution of recombinant human replication factor C (RFC) and identification of an RFC subcomplex possessing DNA-dependent ATPase activity". The Journal of Biological Chemistry. 273 (10): 5979–87. doi: 10.1074/jbc.273.10.5979 . PMID   9488738.
  15. Uhlmann F, Cai J, Flores-Rozas H, Dean FB, Finkelstein J, O'Donnell M, Hurwitz J (June 1996). "In vitro reconstitution of human replication factor C from its five subunits". Proceedings of the National Academy of Sciences of the United States of America. 93 (13): 6521–6. Bibcode:1996PNAS...93.6521U. doi: 10.1073/pnas.93.13.6521 . PMC   39056 . PMID   8692848.
  16. Tomida J, Masuda Y, Hiroaki H, Ishikawa T, Song I, Tsurimoto T, et al. (April 2008). "DNA damage-induced ubiquitylation of RFC2 subunit of replication factor C complex". The Journal of Biological Chemistry. 283 (14): 9071–9. doi: 10.1074/jbc.M709835200 . PMC   2431014 . PMID   18245774.
  17. 1 2 3 Cortese A, Simone R, Sullivan R, Vandrovcova J, Tariq H, Yau WY, et al. (May 2019). "Author Correction: Biallelic expansion of an intronic repeat in RFC1 is a common cause of late-onset ataxia". Nature Genetics. 51 (5): 920. doi:10.1038/s41588-019-0422-y. PMC   6730635 . PMID   31028356.
  18. Scriba CK, Beecroft SJ, Clayton JS, Cortese A, Sullivan R, Yau WY, Dominik N, Rodrigues M, Walker E, Dyer Z, Wu TY, Davis MR, Chandler DC, Weisburd B, Houlden H, Reilly MM, Laing NG, Lamont PJ, Roxburgh RH, Ravenscroft G (October 2020). "A novel RFC1 repeat motif (ACAGG) in two Asia-Pacific CANVAS families". Brain. 143 (10): 2904–10. doi:10.1093/brain/awaa263. PMC   7780484 . PMID   33103729.
  19. Tagliapietra M, Cardellini D, Ferrarini M, Testi S, Ferrari S, Monaco S, Cavallaro T, Fabrizi GM (April 2021). "RFC1 AAGGG repeat expansion masquerading as Chronic Idiopathic Axonal Polyneuropathy". Journal of Neurology. 268 (11): 4280–4290. doi: 10.1007/s00415-021-10552-3 . PMC   8505379 . PMID   33884451.
  20. Currò R, Salvalaggio A, Tozza S, Gemelli C, Dominik N, Galassi Deforie V, Magrinelli F, Castellani F, Vegezzi E, Businaro P, Callegari I, Pichiecchio A, Cosentino G, Alfonsi E, Marchioni E, Colnaghi S, Gana S, Valente EM, Tassorelli C, Efthymiou S, Facchini S, Carr A, Laura M, Rossor AM, Manji H, Lunn MP, Pegoraro E, Santoro L, Grandis M, Bellone E, Beauchamp NJ, Hadjivassiliou M, Kaski D, Bronstein AM, Houlden H, Reilly MM, Mandich P, Schenone A, Manganelli F, Briani C (June 2021). "RFC1 expansions are a common cause of idiopathic sensory neuropathy". Brain. 144 (5): 2904–10. doi: 10.1093/brain/awab072 . ISSN   0006-8950. PMC   8262986 . PMID   33969391.
  21. Traschütz A, Cortese A, Reich S, Dominik N, Faber J, Jacobi H, et al. (Group R study) (March 2021). "Natural History, Phenotypic Spectrum, and Discriminative Features of Multisystemic RFC1-disease". Neurology. 96 (9): e1369–e1382. doi: 10.1212/WNL.0000000000011528 . PMC   8055326 . PMID   33495376.
  22. Sullivan R, Yau WY, Chelban V, Rossi S, O'Connor E, Wood NW, et al. (April 2020). "RFC1 Intronic Repeat Expansions Absent in Pathologically Confirmed Multiple Systems Atrophy". Movement Disorders. 35 (7): 1277–1279. doi:10.1002/mds.28074. PMID   32333430. S2CID   216129457.
  23. Cortese A, Tozza S, Yau WY, Rossi S, Beecroft SJ, Jaunmuktane Z, et al. (February 2020). "Cerebellar ataxia, neuropathy, vestibular areflexia syndrome due to RFC1 repeat expansion". Brain. 143 (2): 480–490. doi:10.1093/brain/awz418. PMC   7009469 . PMID   32040566.

Further reading