Origin recognition complex

Last updated
Origin recognition complex subunit 2
Identifiers
SymbolORC2
Pfam PF04084
InterPro IPR007220
Available protein structures:
Pfam   structures / ECOD  
PDB RCSB PDB; PDBe; PDBj
PDBsum structure summary
Origin recognition complex (ORC) subunit 3 N-terminus
Identifiers
SymbolORC3_N
Pfam PF07034
InterPro IPR010748
Available protein structures:
Pfam   structures / ECOD  
PDB RCSB PDB; PDBe; PDBj
PDBsum structure summary
Origin recognition complex subunit 6 (ORC6)
Identifiers
SymbolORC6
Pfam PF05460
InterPro IPR008721
Available protein structures:
Pfam   structures / ECOD  
PDB RCSB PDB; PDBe; PDBj
PDBsum structure summary

In molecular biology, origin recognition complex (ORC) is a multi-subunit DNA binding complex (6 subunits) that binds in all eukaryotes and archaea in an ATP-dependent manner to origins of replication. The subunits of this complex are encoded by the ORC1, ORC2, ORC3, ORC4, ORC5 and ORC6 genes. [1] [2] [3] ORC is a central component for eukaryotic DNA replication, and remains bound to chromatin at replication origins throughout the cell cycle. [4]

Contents

ORC directs DNA replication throughout the genome and is required for its initiation. [5] [6] [7] ORC and Noc3p bound at replication origins serve as the foundation for assembly of the pre-replication complex (pre-RC), which includes Cdc6, Tah11 (a.k.a. Cdt1), and the Mcm2-Mcm7 complex. [8] [9] [10] [11] Pre-RC assembly during G1 is required for replication licensing of chromosomes prior to DNA synthesis during S phase. [12] [13] [14] Cell cycle-regulated phosphorylation of Orc2, Orc6, Cdc6, and MCM by the cyclin-dependent protein kinase Cdc28 regulates initiation of DNA replication, including blocking reinitiation in G2/M phase. [4] [15] [16] [17]

The ORC is present throughout the cell cycle bound to replication origins, but is only active in late mitosis and early G1.

In yeast, ORC also plays a role in the establishment of silencing at the mating-type loci Hidden MAT Left (HML) and Hidden MAT Right (HMR). [5] [6] [7] ORC participates in the assembly of transcriptionally silent chromatin at HML and HMR by recruiting the Sir1 silencing protein to the HML and HMR silencers. [7] [18] [19]

Both Orc1 and Orc5 bind ATP, though only Orc1 has ATPase activity. [20] The binding of ATP by Orc1 is required for ORC binding to DNA and is essential for cell viability. [11] The ATPase activity of Orc1 is involved in formation of the pre-RC. [21] [22] [23] ATP binding by Orc5 is crucial for the stability of ORC as a whole. Only the Orc1-5 subunits are required for origin binding; Orc6 is essential for maintenance of pre-RCs once formed. [24] Interactions within ORC suggest that Orc2-3-6 may form a core complex. [4] A 2020 report suggests that budding yeast ORC dimerizes in a cell cycle dependent manner to control licensing. [25] [26]

Proteins

This process was initiated by the loading of Mcm2-7 onto the chromatid by the ORC and associated proteins

The following proteins are present in the ORC:

ORC Protein Subunits, orthology and nomenclature by species [27]
S. cerevisiae S. pombe D. melanogaster Vertebrates
ORC 1-6ORC 1-6ORC 1-6ORC 1-6
Cdc6Cdc18Cdc6Cdc6
Cdt1/Tah11/Sid2Cdt1DUPCdt1/RLF-B
Mcm2Mcm2/Cdc19/Nda1Mcm2Mcm2
Mcm3Mcm3Mcm3Mcm3
Cdc54/Mcm4Cdc21DPAMcm4
Cdc46/Mcm5Mcm5/Nda4Mcm5Mcm5
Mcm6Mcm6/Mis5Mcm6Mcm6
Cdc47/Mcm7Mcm7Mcm7mcm7

Archaea feature a simplified version of the ORC, Mcm, and as a consequence the combined pre-RC. Instead of using six different mcm proteins to form a pseudo-symmetrical heterohexamer, all six subunits in the archaeal MCM are the same. They usually have multiple proteins that are homologous to both Cdc6 and Orc1, some of which perform the function of both. Unlike eukaryotic Orc, they do not always form a complex. In fact, they have divergent complex structures when these do form. Sulfolobus islandicus also uses a Cdt1 homologue to recognize one of its replication origins. [28]

Autonomously replicating sequences

Budding yeast

Autonomously Replicating Sequences (ARS), first discovered in budding yeast, are integral to the success of the ORC. These 100-200bp sequences facilitate replication activity during S phase. ARSs can be placed at any novel location of the chromosomes of budding yeast and will facilitate replication from those sites. A highly conserved sequence of 11bp (known as the A element) is thought to be essential for origin function in budding yeast. [27] The ORC was originally identified by its ability to bind to the A element of the ARS in budding yeast.

Animals

Animal cells contain a much more cryptic version of an ARS, with no conserved sequences found as of yet. Here, replication origins gather into bundles called replicon clusters. Each cluster's replicons are similar in length, but individual clusters have replicons of varying length. These replicons all have similar basic residues to which the ORC binds, which in many ways mimic the conserved 11bp A element. All of these clusters are simultaneously activated during S phase. [27]

Role in pre-RC assembly

The ORC is essential for the loading of MCM complexes (Pre-RC) onto DNA. This process is dependent on the ORC, Noc3, Cdc6, and Cdt1 – involving several ATP controlled recruiting events. First, the ORC, Noc3p and Cdc6 form a complex on origin DNA (marked by ARS type regions). New ORC/Noc3/Cdc6 complexes then recruit Cdt1/Mcm2-7 molecules to the site. Once this massive ORC/Noc3/Cdc6/Cdt1/Mcm2-7 complex is formed, the ORC/Noc3/Cdc6/Cdt1 molecules work together to load Mcm2-7 onto the DNA itself by hydrolysis of ATP by Cdc6. Cdc6's phosphorylative activity is dependent on both the ORC and origin DNA. This leads to Cdt1 having decreased stability on the DNA and falling off of the complex leading to Mcm2-7 loading on to the DNA. [29] [27] [30] [31] The structure of the ORC, MCM, as well as the intermediate OCCM complex has been resolved. [32]

CDC6 Function.jpg EukPreRC.jpg

Origin binding activity

Although the ORC is composed of six discrete subunits, only one of these has been found to be significant - ORC1. In vivo studies have shown that Lys-263 and Arg-367 are the basic residues responsible for faithful ORC loading. These molecules represent the above-mentioned ARS. [33] ORC1 interacts with ATP and these basic residues in order to bind the ORC to origin DNA. It has been established that this occurs far before replication, and that the ORC itself is already bound to Origin DNA by the time any Mcm2-7 loading occurs. [31] When Mcm2-7 is first loaded it completely encircles the DNA and helicase activity is inhibited. In S phase, the Mcm2-7 complex interacts with helicase cofactors Cdc45 and GINS to isolate a single DNA strand, unwind the origin, and begin replication down the chromosome. In order to have bidirectional replication, this process happens twice at an origin. Both loading events are mediated by one ORC via an identical process as the first. [34]

See also

Related Research Articles

<span class="mw-page-title-main">DNA replication</span> Biological process

In molecular biology, DNA replication is the biological process of producing two identical replicas of DNA from one original DNA molecule. DNA replication occurs in all living organisms acting as the most essential part of biological inheritance. This is essential for cell division during growth and repair of damaged tissues, while it also ensures that each of the new cells receives its own copy of the DNA. The cell possesses the distinctive property of division, which makes replication of DNA essential.

<span class="mw-page-title-main">Origin of replication</span> Sequence in a genome

The origin of replication is a particular sequence in a genome at which replication is initiated. Propagation of the genetic material between generations requires timely and accurate duplication of DNA by semiconservative replication prior to cell division to ensure each daughter cell receives the full complement of chromosomes. This can either involve the replication of DNA in living organisms such as prokaryotes and eukaryotes, or that of DNA or RNA in viruses, such as double-stranded RNA viruses. Synthesis of daughter strands starts at discrete sites, termed replication origins, and proceeds in a bidirectional manner until all genomic DNA is replicated. Despite the fundamental nature of these events, organisms have evolved surprisingly divergent strategies that control replication onset. Although the specific replication origin organization structure and recognition varies from species to species, some common characteristics are shared.

<span class="mw-page-title-main">Pre-replication complex</span>

A pre-replication complex (pre-RC) is a protein complex that forms at the origin of replication during the initiation step of DNA replication. Formation of the pre-RC is required for DNA replication to occur. Complete and faithful replication of the genome ensures that each daughter cell will carry the same genetic information as the parent cell. Accordingly, formation of the pre-RC is a very important part of the cell cycle.

<span class="mw-page-title-main">MCM6</span>

DNA replication licensing factor MCM6 is a protein that in humans is encoded by the MCM6 gene. MCM6 is one of the highly conserved mini-chromosome maintenance proteins (MCM) that are essential for the initiation of eukaryotic genome replication.

A licensing factor is a protein or complex of proteins that allows an origin of replication to begin DNA replication at that site. Licensing factors primarily occur in eukaryotic cells, since bacteria use simpler systems to initiate replication. However, many archaea use homologues of eukaryotic licensing factors to initiate replication.

<span class="mw-page-title-main">DNA unwinding element</span> Initiation site for the opening of the DNA double helix

A DNA unwinding element is the initiation site for the opening of the double helix structure of the DNA at the origin of replication for DNA synthesis. It is A-T rich and denatures easily due to its low helical stability, which allows the single-strand region to be recognized by origin recognition complex.

<span class="mw-page-title-main">Eukaryotic DNA replication</span> DNA replication in eukaryotic organisms

Eukaryotic DNA replication is a conserved mechanism that restricts DNA replication to once per cell cycle. Eukaryotic DNA replication of chromosomal DNA is central for the duplication of a cell and is necessary for the maintenance of the eukaryotic genome.

<span class="mw-page-title-main">Minichromosome maintenance</span>

The minichromosome maintenance protein complex (MCM) is a DNA helicase essential for genomic DNA replication. Eukaryotic MCM consists of six gene products, Mcm2–7, which form a heterohexamer. As a critical protein for cell division, MCM is also the target of various checkpoint pathways, such as the S-phase entry and S-phase arrest checkpoints. Both the loading and activation of MCM helicase are strictly regulated and are coupled to cell growth cycles. Deregulation of MCM function has been linked to genomic instability and a variety of carcinomas.

<span class="mw-page-title-main">MCM7</span> Protein-coding gene in the species Homo sapiens

DNA replication licensing factor MCM7 is a protein that in humans is encoded by the MCM7 gene.

<span class="mw-page-title-main">MCM2</span> Protein-coding gene in the species Homo sapiens

DNA replication licensing factor MCM2 is a protein that in humans is encoded by the MCM2 gene.

<span class="mw-page-title-main">MCM4</span> Protein-coding gene in the species Homo sapiens

DNA replication licensing factor MCM4 is a protein that in humans is encoded by the MCM4 gene.

<span class="mw-page-title-main">ORC2</span> Protein-coding gene in the species Homo sapiens

Origin recognition complex subunit 2 is a protein that is encoded by the ORC2 (ORC2L) gene in humans.

<span class="mw-page-title-main">Cell division cycle 7-related protein kinase</span> Protein-coding gene in the species Homo sapiens

Cell division cycle 7-related protein kinase is an enzyme that in humans is encoded by the CDC7 gene. The Cdc7 kinase is involved in regulation of the cell cycle at the point of chromosomal DNA replication. The gene CDC7 appears to be conserved throughout eukaryotic evolution; this means that most eukaryotic cells have the Cdc7 kinase protein.

<span class="mw-page-title-main">ORC6</span> Protein-coding gene in the species Homo sapiens

Origin recognition complex subunit 6 is a protein that in humans is encoded by the ORC6 (ORC6L) gene.

<span class="mw-page-title-main">ORC5</span> Protein-coding gene in the species Homo sapiens

Origin recognition complex subunit 5 is a protein that in humans is encoded by the ORC5 (ORC5L) gene.

<span class="mw-page-title-main">ORC3</span> Protein-coding gene in the species Homo sapiens

Origin recognition complex subunit 3 is a protein that in humans is encoded by the ORC3 (ORC3L) gene.

<span class="mw-page-title-main">Cdc6</span>

Cdc6, or cell division cycle 6, is a protein in eukaryotic cells. It is mainly studied in the budding yeast Saccharomyces cerevisiae. It is an essential regulator of DNA replication and plays important roles in the activation and maintenance of the checkpoint mechanisms in the cell cycle that coordinate S phase and mitosis. It is part of the pre-replicative complex (pre-RC) and is required for loading minichromosome maintenance (MCM) proteins onto the DNA, an essential step in the initiation of DNA synthesis. In addition, it is a member of the family of AAA+ ATPases and highly related to ORC1; both are the same protein in archaea.

<span class="mw-page-title-main">Control of chromosome duplication</span>

In cell biology, eukaryotes possess a regulatory system that ensures that DNA replication occurs only once per cell cycle.

<span class="mw-page-title-main">ORC1</span> Protein-coding gene in the species Homo sapiens

Origin recognition complex subunit 1 is a protein that in humans is encoded by the ORC1 gene. It is closely related to CDC6, and both are the same protein in archaea.

<span class="mw-page-title-main">DNA re-replication</span> Undesirable occurrence in eukaryotic cells

DNA re-replication is an undesirable and possibly fatal occurrence in eukaryotic cells in which the genome is replicated more than once per cell cycle. Rereplication is believed to lead to genomic instability and has been implicated in the pathologies of a variety of human cancers. To prevent rereplication, eukaryotic cells have evolved multiple, overlapping mechanisms to inhibit chromosomal DNA from being partially or fully rereplicated in a given cell cycle. These control mechanisms rely on cyclin-dependent kinase (CDK) activity. DNA replication control mechanisms cooperate to prevent the relicensing of replication origins and to activate cell cycle and DNA damage checkpoints. DNA rereplication must be strictly regulated to ensure that genomic information is faithfully transmitted through successive generations.

References

  1. Origin+Recognition+Complex at the U.S. National Library of Medicine Medical Subject Headings (MeSH)
  2. Dutta A, Bell SP (1997). "Initiation of DNA replication in eukaryotic cells". Annual Review of Cell and Developmental Biology. 13: 293–332. doi:10.1146/annurev.cellbio.13.1.293. PMID   9442876.
  3. Chesnokov IN (2007). Multiple functions of the origin recognition complex. International Review of Cytology. Vol. 256. pp. 69–109. doi:10.1016/S0074-7696(07)56003-1. ISBN   9780123737007. PMID   17241905.
  4. 1 2 3 Matsuda K, Makise M, Sueyasu Y, Takehara M, Asano T, Mizushima T (December 2007). "Yeast two-hybrid analysis of the origin recognition complex of Saccharomyces cerevisiae: interaction between subunits and identification of binding proteins". FEMS Yeast Research. 7 (8): 1263–9. doi:10.1111/j.1567-1364.2007.00298.x. PMID   17825065.
  5. 1 2 Bell SP, Stillman B (May 1992). "ATP-dependent recognition of eukaryotic origins of DNA replication by a multiprotein complex". Nature. 357 (6374): 128–34. Bibcode:1992Natur.357..128B. doi:10.1038/357128a0. PMID   1579162. S2CID   4346767.
  6. 1 2 Bell SP, Mitchell J, Leber J, Kobayashi R, Stillman B (November 1995). "The multidomain structure of Orc1p reveals similarity to regulators of DNA replication and transcriptional silencing". Cell. 83 (4): 563–8. doi: 10.1016/0092-8674(95)90096-9 . PMID   7585959.
  7. 1 2 3 Gibson DG, Bell SP, Aparicio OM (June 2006). "Cell cycle execution point analysis of ORC function and characterization of the checkpoint response to ORC inactivation in Saccharomyces cerevisiae". Genes to Cells. 11 (6): 557–73. doi: 10.1111/j.1365-2443.2006.00967.x . PMID   16716188. S2CID   22439595.
  8. Zhang Y, Yu Z, Fu X, Liang C (June 2002). "Noc3p, a bHLH Protein, Plays an Integral Role in the Initiation of DNA Replication in Budding Yeast". Cell. 109 (7): 849–860. doi: 10.1016/s0092-8674(02)00805-x . PMID   12110182.
  9. Rao H, Stillman B (March 1995). "The origin recognition complex interacts with a bipartite DNA binding site within yeast replicators". Proceedings of the National Academy of Sciences of the United States of America. 92 (6): 2224–8. Bibcode:1995PNAS...92.2224R. doi: 10.1073/pnas.92.6.2224 . PMC   42456 . PMID   7892251.
  10. Rowley A, Cocker JH, Harwood J, Diffley JF (June 1995). "Initiation complex assembly at budding yeast replication origins begins with the recognition of a bipartite sequence by limiting amounts of the initiator, ORC". The EMBO Journal. 14 (11): 2631–41. doi:10.1002/j.1460-2075.1995.tb07261.x. PMC   398377 . PMID   7781615.
  11. 1 2 Speck C, Chen Z, Li H, Stillman B (November 2005). "ATPase-dependent cooperative binding of ORC and Cdc6 to origin DNA". Nature Structural & Molecular Biology. 12 (11): 965–71. doi:10.1038/nsmb1002. PMC   2952294 . PMID   16228006.
  12. Kelly TJ, Brown GW (2000). "Regulation of chromosome replication". Annual Review of Biochemistry. 69: 829–80. doi:10.1146/annurev.biochem.69.1.829. PMID   10966477.
  13. Bell SP, Dutta A (2002). "DNA replication in eukaryotic cells". Annual Review of Biochemistry. 71: 333–74. doi:10.1146/annurev.biochem.71.110601.135425. PMID   12045100.
  14. Stillman B (February 2005). "Origin recognition and the chromosome cycle". FEBS Letters. 579 (4): 877–84. doi: 10.1016/j.febslet.2004.12.011 . PMID   15680967. S2CID   33220937.
  15. Weinreich M, Liang C, Chen HH, Stillman B (September 2001). "Binding of cyclin-dependent kinases to ORC and Cdc6p regulates the chromosome replication cycle". Proceedings of the National Academy of Sciences of the United States of America. 98 (20): 11211–7. doi: 10.1073/pnas.201387198 . PMC   58709 . PMID   11572976.
  16. Nguyen VQ, Co C, Li JJ (June 2001). "Cyclin-dependent kinases prevent DNA re-replication through multiple mechanisms". Nature. 411 (6841): 1068–73. Bibcode:2001Natur.411.1068N. doi:10.1038/35082600. PMID   11429609. S2CID   4393812.
  17. Archambault V, Ikui AE, Drapkin BJ, Cross FR (August 2005). "Disruption of mechanisms that prevent rereplication triggers a DNA damage response". Molecular and Cellular Biology. 25 (15): 6707–21. doi:10.1128/MCB.25.15.6707-6721.2005. PMC   1190345 . PMID   16024805.
  18. Triolo T, Sternglanz R (May 1996). "Role of interactions between the origin recognition complex and SIR1 in transcriptional silencing". Nature. 381 (6579): 251–3. Bibcode:1996Natur.381..251T. doi:10.1038/381251a0. PMID   8622770. S2CID   4309206.
  19. Fox CA, Ehrenhofer-Murray AE, Loo S, Rine J (June 1997). "The origin recognition complex, SIR1, and the S phase requirement for silencing". Science. 276 (5318): 1547–51. doi:10.1126/science.276.5318.1547. PMID   9171055.
  20. Klemm RD, Austin RJ, Bell SP (February 1997). "Coordinate binding of ATP and origin DNA regulates the ATPase activity of the origin recognition complex". Cell. 88 (4): 493–502. doi: 10.1016/S0092-8674(00)81889-9 . PMID   9038340.
  21. Klemm RD, Bell SP (July 2001). "ATP bound to the origin recognition complex is important for preRC formation". Proceedings of the National Academy of Sciences of the United States of America. 98 (15): 8361–7. Bibcode:2001PNAS...98.8361K. doi: 10.1073/pnas.131006898 . PMC   37444 . PMID   11459976.
  22. Bowers JL, Randell JC, Chen S, Bell SP (December 2004). "ATP hydrolysis by ORC catalyzes reiterative Mcm2-7 assembly at a defined origin of replication". Molecular Cell. 16 (6): 967–78. doi: 10.1016/j.molcel.2004.11.038 . PMID   15610739.
  23. Randell JC, Bowers JL, Rodríguez HK, Bell SP (January 2006). "Sequential ATP hydrolysis by Cdc6 and ORC directs loading of the Mcm2-7 helicase". Molecular Cell. 21 (1): 29–39. doi: 10.1016/j.molcel.2005.11.023 . PMID   16387651.
  24. Semple JW, Da-Silva LF, Jervis EJ, Ah-Kee J, Al-Attar H, Kummer L, et al. (November 2006). "An essential role for Orc6 in DNA replication through maintenance of pre-replicative complexes". The EMBO Journal. 25 (21): 5150–8. doi:10.1038/sj.emboj.7601391. PMC   1630405 . PMID   17053779.
  25. Yin YC, Prasanth SG (July 2021). "Replication initiation: Implications in genome integrity". DNA Repair. 103: 103131. doi: 10.1016/j.dnarep.2021.103131 . PMC   8296962 . PMID   33992866.
  26. Amin A, Wu, R, Cheung MH, Scott JF, Wang Z, Zhou Z, Liu C, Zhu G, Wong KC, Yu Z, Liang C (March 2020). "An Essential and Cell-Cycle-Dependent ORC Dimerization Cycle Regulates Eukaryotic Chromosomal DNA Replication". Cell Reports. 30 (10): 3323–3338.e6. doi: 10.1016/j.celrep.2020.02.046 . PMID   32160540.
  27. 1 2 3 4 Morgan, David (2007). The Cell Cycle: Principles of Control. Primers in Biology. pp. 62–75. ISBN   978-0878935086.
  28. Ausiannikava D, Allers T (January 2017). "Diversity of DNA Replication in the Archaea". Genes. 8 (2): 56. doi: 10.3390/genes8020056 . PMC   5333045 . PMID   28146124.
  29. Fernández-Cid A, Riera A, Tognetti S, Herrera MC, Samel S, Evrin C, et al. (May 2013). "An ORC/Cdc6/MCM2-7 complex is formed in a multistep reaction to serve as a platform for MCM double-hexamer assembly". Molecular Cell. 50 (4): 577–88. doi: 10.1016/j.molcel.2013.03.026 . hdl: 10044/1/19289 . PMID   23603117.
  30. Randell JC, Bowers JL, Rodríguez HK, Bell SP (January 2006). "Sequential ATP hydrolysis by Cdc6 and ORC directs loading of the Mcm2-7 helicase". Molecular Cell. 21 (1): 29–39. doi: 10.1016/j.molcel.2005.11.023 . PMID   16387651.
  31. 1 2 Speck C, Chen Z, Li H, Stillman B (November 2005). "ATPase-dependent cooperative binding of ORC and Cdc6 to origin DNA". Nature Structural & Molecular Biology. 12 (11): 965–71. doi:10.1038/nsmb1002. PMC   2952294 . PMID   16228006.
  32. Yuan Z, Riera A, Bai L, Sun J, Nandi S, Spanos C, et al. (March 2017). "Structural basis of Mcm2-7 replicative helicase loading by ORC-Cdc6 and Cdt1". Nature Structural & Molecular Biology. 24 (3): 316–324. doi:10.1038/nsmb.3372. PMC   5503505 . PMID   28191893.
  33. Kawakami H, Ohashi E, Kanamoto S, Tsurimoto T, Katayama T (October 2015). "Specific binding of eukaryotic ORC to DNA replication origins depends on highly conserved basic residues". Scientific Reports. 5: 14929. Bibcode:2015NatSR...514929K. doi:10.1038/srep14929. PMC   4601075 . PMID   26456755.
  34. Chistol G, Walter JC (April 2015). "Single-Molecule Visualization of MCM2-7 DNA Loading: Seeing Is Believing". Cell. 161 (3): 429–430. doi: 10.1016/j.cell.2015.04.006 . PMID   25910200.

Further reading

This article incorporates text from the public domain Pfam and InterPro: IPR007220
This article incorporates text from the public domain Pfam and InterPro: IPR010748
This article incorporates text from the public domain Pfam and InterPro: IPR008721