MCM6

Last updated
MCM6
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases MCM6 , MCG40308, Mis5, P105MCM, minichromosome maintenance complex component 6
External IDs OMIM: 601806 MGI: 1298227 HomoloGene: 4322 GeneCards: MCM6
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_005915

NM_008567
NM_001313695

RefSeq (protein)

NP_005906

NP_001300624
NP_032593

Location (UCSC) Chr 2: 135.84 – 135.88 Mb Chr 1: 128.26 – 128.29 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

DNA replication licensing factor MCM6 is a protein that in humans is encoded by the MCM6 gene. [5] MCM6 is one of the highly conserved mini-chromosome maintenance proteins (MCM) that are essential for the initiation of eukaryotic genome replication.

Contents

Function

The MCM complex consisting of MCM6 (this protein) and MCM2, 4 and 7 possesses DNA helicase activity, and may act as a DNA unwinding enzyme. The hexameric protein complex formed by the MCM proteins is a key component of the pre-replication complex (pre-RC) and may be involved in the formation of replication forks and in the recruitment of other DNA replication related proteins. The phosphorylation of the complex by CDC2 kinase reduces the helicase activity, suggesting a role in the regulation of DNA replication. [6] Mcm 6 has recently been shown to interact strongly Cdt1 at defined residues, by mutating these target residues Wei et al. observed lack of Cdt1 recruitment of Mcm2-7 to the pre-RC. [7]

Gene

The MCM6 gene, MCM6, is expressed at very high level. MCM6 contains 18 introns. There are 2 non overlapping alternative last exons. The transcripts appear to differ by truncation of the 3' end, presence or absence of 2 cassette exons, common exons with different boundaries.

MCM6 produces, by alternative splicing, 3 different transcripts, all with introns, putatively encoding 3 different protein isoforms.

MCM6 contains two of the regulatory regions for LCT, the gene encoding the protein lactase, located in two of the MCM6 introns, approximately 14 kb (-13910) and 22 kb (-22018) upstream of LCT. [8] The (-13910) region, in particular, has been shown to function in vitro as an enhancer element capable of differentially activating transcription of LCT promoter. [9]

Mutations in these regions are associated with lactose tolerance into adult life. [8] [10]

Interactions

MCM6 has been shown to interact with:

See also

Related Research Articles

<span class="mw-page-title-main">Werner syndrome helicase</span>

Werner syndrome ATP-dependent helicase, also known as DNA helicase, RecQ-like type 3, is an enzyme that in humans is encoded by the WRN gene. WRN is a member of the RecQ Helicase family. Helicase enzymes generally unwind and separate double-stranded DNA. These activities are necessary before DNA can be copied in preparation for cell division. Helicase enzymes are also critical for making a blueprint of a gene for protein production, a process called transcription. Further evidence suggests that Werner protein plays a critical role in repairing DNA. Overall, this protein helps maintain the structure and integrity of a person's DNA.

<span class="mw-page-title-main">Eukaryotic DNA replication</span> DNA Replication in eukaryotic

Eukaryotic DNA replication is a conserved mechanism that restricts DNA replication to once per cell cycle. Eukaryotic DNA replication of chromosomal DNA is central for the duplication of a cell and is necessary for the maintenance of the eukaryotic genome.

<span class="mw-page-title-main">Minichromosome maintenance</span>

The minichromosome maintenance protein complex (MCM) is a DNA helicase essential for genomic DNA replication. Eukaryotic MCM consists of six gene products, Mcm2–7, which form a heterohexamer. As a critical protein for cell division, MCM is also the target of various checkpoint pathways, such as the S-phase entry and S-phase arrest checkpoints. Both the loading and activation of MCM helicase are strictly regulated and are coupled to cell growth cycles. Deregulation of MCM function has been linked to genomic instability and a variety of carcinomas.

<span class="mw-page-title-main">Replication protein A1</span> Protein-coding gene in the species Homo sapiens

Replication protein A 70 kDa DNA-binding subunit is a protein that in humans is encoded by the RPA1 gene.

<span class="mw-page-title-main">MCM7</span>

DNA replication licensing factor MCM7 is a protein that in humans is encoded by the MCM7 gene.

<span class="mw-page-title-main">MCM2</span>

DNA replication licensing factor MCM2 is a protein that in humans is encoded by the MCM2 gene.

<span class="mw-page-title-main">MCM3</span>

DNA replication licensing factor MCM3 is a protein that in humans is encoded by the MCM3 gene.

<span class="mw-page-title-main">CDC6</span> Protein-coding gene in the species Homo sapiens

Cell division control protein 6 homolog is a protein that in humans is encoded by the CDC6 gene.

<span class="mw-page-title-main">MCM4</span> Protein-coding gene in the species Homo sapiens

DNA replication licensing factor MCM4 is a protein that in humans is encoded by the MCM4 gene.

<span class="mw-page-title-main">Bloom syndrome protein</span> Mammalian protein found in humans

Bloom syndrome protein is a protein that in humans is encoded by the BLM gene and is not expressed in Bloom syndrome.

<span class="mw-page-title-main">DNA replication factor CDT1</span> Protein-coding gene in the species Homo sapiens

CDT1 is a protein that in humans is encoded by the CDT1 gene. It is a licensing factor that functions to limit DNA from replicating more than once per cell cycle.

<span class="mw-page-title-main">ORC2</span>

Origin recognition complex subunit 2 is a protein that is encoded by the ORC2 (ORC2L) gene in humans.

<span class="mw-page-title-main">MCM5</span>

DNA replication licensing factor MCM5 is a protein that in humans is encoded by the MCM5 gene.

<span class="mw-page-title-main">Cell division cycle 7-related protein kinase</span> Protein-coding gene in the species Homo sapiens

Cell division cycle 7-related protein kinase is an enzyme that in humans is encoded by the CDC7 gene. The Cdc7 kinase is involved in regulation of the cell cycle at the point of chromosomal DNA replication. The gene CDC7 appears to be conserved throughout eukaryotic evolution; this means that most eukaryotic cells have the Cdc7 kinase protein.

<span class="mw-page-title-main">AKAP8</span> Protein-coding gene in the species Homo sapiens

A-kinase anchor protein 8 is an enzyme that, in humans, is encoded by the AKAP8 gene.

<span class="mw-page-title-main">ORC6</span> Protein-coding gene in the species Homo sapiens

Origin recognition complex subunit 6 is a protein that in humans is encoded by the ORC6 (ORC6L) gene.

<span class="mw-page-title-main">MCM10</span> Protein-coding gene in the species Homo sapiens

Protein MCM10 homolog is a protein that in humans is encoded by the MCM10 gene. It is essential for activation of the Cdc45:Mcm2-7:GINS helicase, and thus required for proper DNA replication.

<span class="mw-page-title-main">CDC45-related protein</span>

CDC45 is a protein that in humans is encoded by the CDC45L gene.

<span class="mw-page-title-main">MCM3AP</span> Protein-coding gene in the species Homo sapiens

80 kDa MCM3-associated protein is a protein that in humans is encoded by the MCM3AP gene.

<span class="mw-page-title-main">ORC1</span>

Origin recognition complex subunit 1 is a protein that in humans is encoded by the ORC1 gene. It is closely related to CDC6, and both are the same protein in archaea.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000076003 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000026355 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Harvey CB, Wang Y, Darmoul D, Phillips A, Mantei N, Swallow DM (December 1996). "Characterisation of a human homologue of a yeast cell division cycle gene, MCM6, located adjacent to the 5' end of the lactase gene on chromosome 2q21". FEBS Lett. 398 (2–3): 135–40. doi: 10.1016/S0014-5793(96)01189-1 . PMID   8977093. S2CID   1323113.
  6. "Entrez Gene: MCM6 minichromosome maintenance deficient 6 homolog (S. cerevisiae)".
  7. Wei Z, Liu C, Wu X, Xu N, Zhou B, Liang C, Zhu G (March 2010). "Characterization and structure determination of the Cdt1 binding domain of human minichromosome maintenance (Mcm) 6". J Biol Chem. 285 (17): 12469–73. doi: 10.1074/jbc.C109.094599 . PMC   2857124 . PMID   20202939.
  8. 1 2 Enattah NS, Sahi T, Savilahti E, Terwilliger JD, Peltonen L, Järvelä I (February 2002). "Identification of a variant associated with adult-type hypolactasia". Nat. Genet. 30 (2): 233–7. doi:10.1038/ng826. PMID   11788828. S2CID   21430931.
  9. Olds LC, Sibley E (September 2003). "Lactase persistence DNA variant enhances lactase promoter activity in vitro: functional role as a cis regulatory element". Hum. Mol. Genet. 12 (18): 2333–40. doi: 10.1093/hmg/ddg244 . PMID   12915462.
  10. Mattar R, de Campos Mazo DF, Carrilho FJ (2012). "Lactose intolerance: diagnosis, genetic, and clinical factors". Clin Exp Gastroenterol. 5: 113–21. doi:10.2147/CEG.S32368. PMC   3401057 . PMID   22826639. " Two variants were associated with lactase persistence..."
  11. 1 2 3 4 5 6 Kneissl M, Pütter V, Szalay AA, Grummt F (March 2003). "Interaction and assembly of murine pre-replicative complex proteins in yeast and mouse cells". J. Mol. Biol. 327 (1): 111–28. doi:10.1016/s0022-2836(03)00079-2. PMID   12614612.
  12. 1 2 Yabuta N, Kajimura N, Mayanagi K, Sato M, Gotow T, Uchiyama Y, Ishimi Y, Nojima H (May 2003). "Mammalian Mcm2/4/6/7 complex forms a toroidal structure". Genes Cells. 8 (5): 413–21. doi: 10.1046/j.1365-2443.2003.00645.x . PMID   12694531. S2CID   27707848.
  13. 1 2 3 You Z, Ishimi Y, Masai H, Hanaoka F (November 2002). "Roles of Mcm7 and Mcm4 subunits in the DNA helicase activity of the mouse Mcm4/6/7 complex". J. Biol. Chem. 277 (45): 42471–9. doi: 10.1074/jbc.M205769200 . PMID   12207017.
  14. Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, Klitgord N, Simon C, Boxem M, Milstein S, Rosenberg J, Goldberg DS, Zhang LV, Wong SL, Franklin G, Li S, Albala JS, Lim J, Fraughton C, Llamosas E, Cevik S, Bex C, Lamesch P, Sikorski RS, Vandenhaute J, Zoghbi HY, Smolyar A, Bosak S, Sequerra R, Doucette-Stamm L, Cusick ME, Hill DE, Roth FP, Vidal M (October 2005). "Towards a proteome-scale map of the human protein-protein interaction network". Nature. 437 (7062): 1173–8. Bibcode:2005Natur.437.1173R. doi:10.1038/nature04209. PMID   16189514. S2CID   4427026.
  15. You Z, Komamura Y, Ishimi Y (December 1999). "Biochemical analysis of the intrinsic Mcm4-Mcm6-mcm7 DNA helicase activity". Mol. Cell. Biol. 19 (12): 8003–15. doi:10.1128/MCB.19.12.8003. PMC   84885 . PMID   10567526.
  16. Ishimi Y, Ichinose S, Omori A, Sato K, Kimura H (September 1996). "Binding of human minichromosome maintenance proteins with histone H3". J. Biol. Chem. 271 (39): 24115–22. doi: 10.1074/jbc.271.39.24115 . PMID   8798650.
  17. Fujita M, Kiyono T, Hayashi Y, Ishibashi M (April 1997). "In vivo interaction of human MCM heterohexameric complexes with chromatin. Possible involvement of ATP". J. Biol. Chem. 272 (16): 10928–35. doi: 10.1074/jbc.272.16.10928 . PMID   9099751.

Further reading