Cyanophora

Last updated

Cyanophora
Woelfib cyanphoraparadoxa teilungsfigur 1 0632002 img 54414492 ude 20131024233254 small.jpg
Cyanophora paradoxa
Scientific classification OOjs UI icon edit-ltr.svg
(unranked): Archaeplastida
Division: Glaucophyta
Class: Glaucophyceae
Order: Glaucocystales
Family: Glaucocystaceae
Genus: Cyanophora
A.A.Korshikov, 1924

Cyanophora is a genus of glaucophytes, a group of rare but evolutionarily significant freshwater microalgae. [1]

It includes the following species: [1]

These species are differentiated based on cell shape, number and position of cyanelles, and molecular data. [1]

The species Cyanophora paradoxa is well-studied as a model organism. [2]

Related Research Articles

<span class="mw-page-title-main">Glaucophyte</span> Division of algae

The glaucophytes, also known as glaucocystophytes or glaucocystids, are a small group of unicellular algae found in freshwater and moist terrestrial environments, less common today than they were during the Proterozoic. The stated number of species in the group varies from about 14 to 26. Together with the red algae (Rhodophyta) and the green algae plus land plants, they form the Archaeplastida.

<span class="mw-page-title-main">Gavialidae</span> Family of gharial crocodylians

Gavialidae is a family of large semiaquatic crocodilians with elongated, narrow snouts. Gavialidae consists of two living species, the gharial and the false gharial, both occurring in Asia. Many extinct members are known from a broader range, including the recently extinct Hanyusuchus. Gavialids are generally regarded as lacking the jaw strength to capture the large mammalian prey favoured by crocodiles and alligators of similar size so their thin snout is best used to catch fish, however the false gharial has been found to have a generalist diet with mature adults preying upon larger vertebrates, such as ungulates.

<span class="mw-page-title-main">Afrotheria</span> Clade of mammals containing elephants and elephant shrews

Afrotheria is a superorder of mammals, the living members of which belong to groups that are either currently living in Africa or of African origin: golden moles, elephant shrews, otter shrews, tenrecs, aardvarks, hyraxes, elephants, sea cows, and several extinct clades. Most groups of afrotheres share little or no superficial resemblance, and their similarities have only become known in recent times because of genetics and molecular studies. Many afrothere groups are found mostly or exclusively in Africa, reflecting the fact that Africa was an island continent from the Cretaceous until the early Miocene around 20 million years ago, when Afro-Arabia collided with Eurasia.

<span class="mw-page-title-main">South American lungfish</span> Species of fish

The South American lungfish, also known as the American mud-fish and scaly salamanderfish, is the single species of lungfish found in swamps and slow-moving waters of the Amazon, Paraguay, and lower Paraná River basins in South America. Notable as an obligate air-breather, it is the sole member of its family Lepidosirenidae, although some authors also place Protopterus in the family. In Brazil, it is known by the indigenous language Tupi name piramboia, which means "snake-fish", and synonyms pirarucu-bóia, traíra-bóia, and caramuru.

<span class="mw-page-title-main">Euarchonta</span> Mammal grandorder containing treeshrews, colugos, and primates

The Euarchonta are a proposed grandorder of mammals: the order Scandentia (treeshrews), and its sister Primatomorpha mirorder, containing the Dermoptera or colugos and the primates.

Internal transcribed spacer (ITS) is the spacer DNA situated between the small-subunit ribosomal RNA (rRNA) and large-subunit rRNA genes in the chromosome or the corresponding transcribed region in the polycistronic rRNA precursor transcript.

<span class="mw-page-title-main">Hymenochaetales</span> Order of fungi

The Hymenochaetales are an order of fungi in the class Agaricomycetes. The order in its current sense is based on molecular research and not on any unifying morphological characteristics. According to one 2008 estimate, the Hymenochaetales contain around 600 species worldwide, mostly corticioid fungi and poroid fungi, but also including several clavarioid fungi and agarics. Species of economic importance include wood decay fungi in the genera Phellinus and Inonotus sensu lato, some of which may cause losses in forestry. Therapeutic properties are claimed for Inonotus obliquus ("chaga") and Phellinus linteus, both of which are now commercially marketed.

<i>Tomistoma</i> Genus of crocodilians

Tomistoma is a genus of gavialid crocodilians. They are noted for their long narrow snouts used to catch fish, similar to the gharial. Tomistoma contains one extant (living) member, the false gharial, as well as potentially several extinct species: T. cairense, T. lusitanicumT. coppensi, and T. dowsoni. However, these species may need to be reclassified to different genera as studies have shown them to be paraphyletic, for example: previously assigned species T. taiwanicus from Taiwan, is reclassified to the genus Toyotamaphimeia, and T. dowsoni should be excluded from Tomistoma based on phylogenetic analysis.

<i>Gymnodinium</i> Genus of single-celled organisms

Gymnodinium is a genus of dinoflagellates, a type of marine and freshwater plankton. It is one of the few naked dinoflagellates, or species lacking armor known as cellulosic plates. Since 2000, the species which had been considered to be part of Gymnodinium have been divided into several genera, based on the nature of the apical groove and partial LSU rDNA sequence data. Amphidinium was redefined later. Gymnodinium belong to red dinoflagellates that, in concentration, can cause red tides. The red tides produced by some Gymnodinium, such as Gymnodinium catenatum, are toxic and pose risks to marine and human life, including paralytic shellfish poisoning.

<i>Pseudis</i> Genus of amphibians

Pseudis is a genus of South American frogs in the family Hylidae. They are often common and frequently heard, but easily overlooked because of their camouflage and lifestyle, living in lakes, ponds, marshes and similar waters with extensive aquatic vegetation, often sitting at the surface among plants or on floating plants, but rapidly diving if disturbed. Whereas the adults are medium-sized frogs, their tadpoles are large; in some species the world's longest.

<i>Mixotricha paradoxa</i> Species of protozoan

Mixotricha paradoxa is a species of protozoan that lives inside the gut of the Australian termite species Mastotermes darwiniensis.

<i>Boverisuchus</i> Extinct genus of reptiles

Boverisuchus is an extinct genus of planocraniid crocodyliforms known from the middle Eocene of Germany and western North America. It was a relatively small crocodyliform with an estimated total length of approximately 2.2–3.6 metres (7.2–11.8 ft).

<span class="mw-page-title-main">Agaricomycotina</span> Subdivision of fungi

Agaricomycotina is one of three subdivisions of the Basidiomycota, and represents all of the fungi which form macroscopic fruiting bodies. Agaricomycotina contains over 30,000 species, divided into three classes: Tremellomycetes, Dacrymycetes, and Agaricomycetes. Around 98% of the species are in the class Agaricomycetes, including all the agarics, bracket fungi, clavarioid fungi, corticioid fungi, and gasteroid fungi. Tremellomycetes contains many basidiomycete yeasts and some conspicuous jelly fungi. Dacrymycetes contains a further group of jelly fungi. These taxa are founded on molecular research, based on cladistic analysis of DNA sequences, and supersede earlier morphology-based classifications. Agaricomycotina contains nearly one third of all described species of fungi.

<i>Gavialosuchus</i> Extinct genus of reptiles

Gavialosuchus is an extinct genus of gavialoid crocodylian from the early Miocene of Europe. Currently only one species is recognized, as a few other species of Gavialosuchus have since been reclassified to other genera.

<span class="mw-page-title-main">Alligatoroidea</span> Superfamily of reptiles

Alligatoroidea is one of three superfamilies of crocodylians, the other two being Crocodyloidea and Gavialoidea. Alligatoroidea evolved in the Late Cretaceous period, and consists of the alligators and caimans, as well as extinct members more closely related to the alligators than the two other groups.

Hermann A. M. Mucke is an Austrian bioscientist with a peer-review publishing record in the fields of molecular biology, neuropsychiatry, cardiology and ophthalmology, mostly from the perspective of drug development. He is also a management consultant and entrepreneur working and publishing in biopharmaceutical strategic knowledge management, intellectual property management, and life science technology assessment.

<i>Cyanophora paradoxa</i> Species of alga

Cyanophora paradoxa is a freshwater species of Glaucophyte that is used as a model organism. C. paradoxa has two cyanelles or chloroplasts where photosynthesis occurs. Cyanelles are unusual organelles in that they retain a rudimentary peptidoglycan wall. The cyanelle genome of C. paradoxa strain LB 555 was sequenced and published in 1995. The nuclear genome was also sequenced and published in 2012.

<i>Planocrania</i> Extinct genus of reptiles

Planocrania is an extinct genus of eusuchian crocodyliforms from what is now China. Two species are currently known to belong to the genus.

<span class="mw-page-title-main">Gavialoidea</span> Superfamily of large reptiles

Gavialoidea is one of three superfamilies of crocodylians, the other two being Alligatoroidea and Crocodyloidea. Although many extinct species are known, only the gharial Gavialis gangeticus and the false gharial Tomistoma schlegelii are alive today, with Hanyusuchus having become extinct in the last few centuries.

References

  1. 1 2 3 Takahashi, Toshiyuki; Sato, Mayuko; Toyooka, Kiminori; Matsuzaki, Ryo; Kawafune, Kaoru; Kawamura, Mai; Okuda, Kazuo; Nozaki, Hisayoshi (2014). "Five Cyanophora (Cyanophorales, Glaucophyta) species delineated based on morphological and molecular data". Journal of Phycology. 50 (6): 1058–1069. doi:10.1111/jpy.12236. PMID   26988787. S2CID   24754492.
  2. Fettke J, Hejazi M, Smirnova J, Höchel E, Stage M, Steup M (2009). "Eukaryotic starch degradation: integration of plastidial and cytosolic pathways". J. Exp. Bot. 60 (10): 2907–22. doi: 10.1093/jxb/erp054 . PMID   19325165.{{cite journal}}: CS1 maint: multiple names: authors list (link)