Cytostome

Last updated
Diagram of a ciliate Paramecium diagram.svg
Diagram of a ciliate

A cytostome (from cyto-, cell and stome-, mouth) or cell mouth is a part of a cell specialized for phagocytosis, usually in the form of a microtubule-supported funnel or groove. Food is directed into the cytostome, and sealed into vacuoles. Only certain groups of protozoa, such as the Ciliophora and Excavata, have cytostomes. [1] An example is Balantidium coli , a ciliate. In other protozoa, and in cells from multicellular organisms, phagocytosis takes place at any point on the cell or feeding takes place by absorption.

Contents

Structure

The cytostome forms an invagination on the cell surface and is typically directed towards the nucleus of the cell. [2] The cytostome is often labeled as the entire invagination, but in fact the cytostome only constitutes the opening of the invagination at the surface of the cell. The rest of the invagination is classified as the cytopharynx. [3] The cytopharynx works in conjunction with the cytostome in order to import macromolecules into the cell. This strong association between the cytostome and cytopharynx is often called the cytostome-cytopharynx complex or the cytopharyngeal apparatus. However, in a small number of cases the cytostome works independently in order to import macromolecules. In these instances, the cytostome imports macromolecules by directly forming vesicles that are imported into the interior of the cell. [3]

The cytostome is associated with microtubules that function in maintaining its form. One set of microtubules is arranged in a triplet formation and is located directly beneath the cytostome membrane. A second set of microtubules is positioned directly beneath the flagella r pocket membrane and forms a quartet. [4]

Cytopharynx

Equally as important in the function of endocytosis is the structure known as the cytopharynx. The cytopharynx is a long, tube-like structure that forms the invagination associated with the cytostome. While the shape of the cytopharynx is not constant, it is typically directed towards the posterior of the cell, often hooking around a central nucleus. The length of the cytopharynx varies during the cell cycle, however the average length is 8 μm. Much like the cytostome, a set of microtubules form an association with the cytopharynx. Two sets of microtubules follow the path of the cytopharynx in cells. These sets of microtubules form a gutter like structure that surrounds the cytopharynx. One side of the cytopharynx is not associated with these microtubules and is deemed the "nude". However, vesicles associate with this side of the cytopharynx. [4]

Location

The location of the cytostome in most flagellated protozoa is strongly conserved. The cytostome is located on the anterior end of the cell close to a structure known as the flagellar pocket. The flagellar pocket is also an invagination in the cell and also serves as a site of endocytosis. The opening of the cytostome is approximately level with the opening of the flagellar pocket. [3]

Ciliophora is a phylum of protozoa. The cytostome in this phyla can be either apical or lateral. [5]

Function

The cytostome-cytopharynx complex functions as follows: macromolecules to be taken up by a cell enter the cytostome. Macromolecules then pass into the lumen of the cytopharynx and are transported to the posterior end of the cell where they are put into budding vesicles that are transported to others parts of the cell. The cytopharynx in this way acts much like a straw that sucks macromolecules to the posterior end of the cell. The passage of macromolecules from the entrance of the cytostome to the posterior end of the cytopharynx takes at least 2 minutes. The cytostome is the main site of endocytosis in Trypanosoma cruzi epimastigotes. [6]

Associations

The cytostome has also been found to associate with the flagellum of Trypanosoma cruzi . So far, this is the only known example of an endocytotic organelle being associated with an organelle that is used for locomotion. [2]

As mentioned above, the flagellar pocket is another site of endocytosis in flagellated protozoa. The flagellar pocket is an invagination that is formed around the extracellular flagellum. The flagellar pocket is a site of both endocytosis and exocytosis in cells. [7]

Visualization methods

Many methods have been used in order to visualize the cytostome. Eger et al. used gold labeled transferrin molecules in combination with confocal microscopy in order to visualize the cytostome. This experiment showed that labeling with the gold particles was evident at two locations in the cells; one of the locations was the bottom of the cytopharynx, and the other location was in reservosomes in the cell. [7]

Another team used ion beam scanning electron microscopy, also known as FIB-SEM followed by three dimensional reconstruction in order to create a 3-dimensional model of the cytostome-cytopharynx complex. [4]

Related Research Articles

Endocytosis Cellular process

Endocytosis is a cellular process in which substances are brought into the cell. The material to be internalized is surrounded by an area of cell membrane, which then buds off inside the cell to form a vesicle containing the ingested material. Endocytosis includes pinocytosis and phagocytosis. It is a form of active transport.

In cell biology, an organelle is a specialized subunit, usually within a cell, that has a specific function. The name organelle comes from the idea that these structures are parts of cells, as organs are to the body, hence organelle, the suffix -elle being a diminutive. Organelles are either separately enclosed within their own lipid bilayers or are spatially distinct functional units without a surrounding lipid bilayer. Although most organelles are functional units within cells, some functional units that extend outside of cells are often termed organelles, such as cilia, the flagellum and archaellum, and the trichocyst.

Flagellum Cellular appendage functioning as locomotive or sensory organelle

A flagellum is a hairlike appendage that protrudes from a wide range of microorganisms termed as flagellates. A flagellate can have one or several flagella. Certain cells such as the mammalian sperm cell is also flagellated, in order to propel itself through the female reproductive tract. The primary function of a flagellum is that of motility. In some bacteria the flagellum can also function as a sensory organelle, being sensitive to wetness, chemicals, and temperatures outside the cell.

Exocytosis Active transport and bulk transport in which a cell transports molecules out of the cell

Exocytosis is a form of active transport and bulk transport in which a cell transports molecules out of the cell. As an active transport mechanism, exocytosis requires the use of energy to transport material. Exocytosis and its counterpart, endocytosis, are used by all cells because most chemical substances important to them are large polar molecules that cannot pass through the hydrophobic portion of the cell membrane by passive means. Exocytosis is the process by which a large amount of molecules are released; thus it is a form of bulk transport. Exocytosis occurs via secretory portals at the cell plasma membrane called porosomes. Porosomes are permanent cup-shaped lipoprotein structure at the cell plasma membrane, where secretory vesicles transiently dock and fuse to release intra-vesicular contents from the cell.

Trypanosomatida Order of flagellate protists in the kinetoplastid excavates

Trypanosomatida is a group of kinetoplastid excavates distinguished by having only a single flagellum. The name is derived from the Greek trypano (borer) and soma (body) because of the corkscrew-like motion of some trypanosomatid species. All members are exclusively parasitic, found primarily in insects. A few genera have life-cycles involving a secondary host, which may be a vertebrate, invertebrate or plant. These include several species that cause major diseases in humans. Trypanosomatida are intracellular parasites.

Kinetoplastida Flagellated protists belonging to the phylum Euglenozoa

Kinetoplastida is a group of flagellated protists belonging to the phylum Euglenozoa, and characterised by the presence of an organelle with a large massed DNA called kinetoplast. The organisms are commonly referred to as "kinetoplastids" or "kinetoplasts" The group includes a number of parasites responsible for serious diseases in humans and other animals, as well as various forms found in soil and aquatic environments. Their distinguishing feature, the presence of a kinetoplast, is an unusual DNA-containing granule located within the single mitochondrion associated with the base of the cell's flagellum. The kinetoplast contains many copies of the mitochondrial genome.

<i>Chlamydomonas</i> Genus of algae

Chlamydomonas is a genus of green algae consisting of about 150 species all unicellular flagellates, found in stagnant water and on damp soil, in freshwater, seawater, and even in snow as "snow algae". Chlamydomonas is used as a model organism for molecular biology, especially studies of flagellar motility and chloroplast dynamics, biogenesis, and genetics. One of the many striking features of Chlamydomonas is that it contains ion channels (channelrhodopsins) that are directly activated by light. Some regulatory systems of Chlamydomonas are more complex than their homologs in Gymnosperms, with evolutionarily related regulatory proteins being larger and containing additional domains.

Endosome Vacuole to which materials ingested by endocytosis are delivered

Endosomes are a collection of intracellular sorting organelles in eukaryotic cells. They are part of endocytic membrane transport pathway originating from the trans Golgi network. Molecules or ligands internalized from the plasma membrane can follow this pathway all the way to lysosomes for degradation or can be recycled back to the cell membrane in the endocytic cycle. Molecules are also transported to endosomes from the trans Golgi network and either continue to lysosomes or recycle back to the Golgi apparatus.

Pinocytosis

In cellular biology, pinocytosis, otherwise known as fluid endocytosis and bulk-phase pinocytosis, is a mode of endocytosis in which small particles suspended in extracellular fluid are brought into the cell through an invagination of the cell membrane, resulting in a suspension of the particles within a small vesicle inside the cell. These pinocytotic vesicles then typically fuse with early endosomes to hydrolyze the particles.

Receptor-mediated endocytosis

Receptor-mediated endocytosis (RME), also called clathrin-mediated endocytosis, is a process by which cells absorb metabolites, hormones, proteins – and in some cases viruses – by the inward budding of the plasma membrane (invagination). This process forms vesicles containing the absorbed substances and is strictly mediated by receptors on the surface of the cell. Only the receptor-specific substances can enter the cell through this process.

Axoneme

An axoneme, also called an axial filament is the microtubule-based cytoskeletal structure that forms the core of a cilium or flagellum. Cilia and flagella are found on many cells, organisms, and microorganisms, to provide motility. The axoneme serves as the "skeleton" of these organelles, both giving support to the structure and, in some cases, the ability to bend. Though distinctions of function and length may be made between cilia and flagella, the internal structure of the axoneme is common to both.

<i>Trypanosoma brucei</i> Species of parasite

Trypanosoma brucei is a species of parasitic kinetoplastid belonging to the genus Trypanosoma. This parasite is the cause of vector-borne diseases of vertebrate animals, including humans, carried by species of tsetse fly in sub-Saharan Africa. In humans T. brucei causes African trypanosomiasis, or sleeping sickness. In animals it causes animal trypanosomiasis, also called nagana in cattle and horses. T. brucei has traditionally been grouped into three subspecies: T. b. brucei, T. b. gambiense and T. b. rhodesiense. The first is a parasite of non-human vertebrates, while the latter two are known to be parasites of humans. Only rarely can the T. b. brucei infect a human.

<i>Trypanosoma cruzi</i> Species of parasitic euglenoids (protozoans)

Trypanosoma cruzi is a species of parasitic euglenoids. Amongst the protozoa, the trypanosomes characteristically bore tissue in another organism and feed on blood (primarily) and also lymph. This behaviour causes disease or the likelihood of disease that varies with the organism: Chagas disease in humans, dourine and surra in horses, and a brucellosis-like disease in cattle. Parasites need a host body and the haematophagous insect triatomine is the major vector in accord with a mechanism of infection. The triatomine likes the nests of vertebrate animals for shelter, where it bites and sucks blood for food. Individual triatomines infected with protozoa from other contact with animals transmit trypanosomes when the triatomine deposits its faeces on the host's skin surface and then bites. Penetration of the infected faeces is further facilitated by the scratching of the bite area by the human or animal host.

Kinetoplast

A kinetoplast is a network of circular DNA inside a large mitochondrion that contains many copies of the mitochondrial genome. The most common kinetoplast structure is a disk, but they have been observed in other arrangements. Kinetoplasts are only found in Excavata of the class Kinetoplastida. The variation in the structures of kinetoplasts may reflect phylogenic relationships between kinetoplastids. A kinetoplast is usually adjacent to the organism's flagellar basal body, suggesting that it is tightly bound to the cytoskeleton. In Trypanosoma brucei this cytoskeletal connection is called the tripartite attachment complex and includes the protein p166.

Protozoan infection Parasitic disease caused by a protozoan

Protozoan infections are parasitic diseases caused by organisms formerly classified in the Kingdom Protozoa. They are usually contracted by either an insect vector or by contact with an infected substance or surface and include organisms that are now classified in the supergroups Excavata, Amoebozoa, SAR, and Archaeplastida.

Psalteriomonas is a genus of excavates in the group of Heterolobosea. The genus was first discovered and named in 1990. It contains amoeboflagellate cells that live in freshwater anaerobic sediments all over the world. The microtubule-organizing ribbon and the associated microfibrillar bundles of the mastigote system is the predominant feature in Psalteriomonas. This harp-shaped complex gives rise to the name of this genus. Psalteriomonasforms an endosymbiotic relationship with methanogenic bacteria, especially with Methanobacterium formicicum There are currently three species in this genus: P. lanterna, P. vulgaris, and P. magna.

Intracellular transport Directed movement of vesicles and substances within a cell

Intracellular transport is the movement of vesicles and substances within a cell. Intracellular transport is required for maintaining homeostasis within the cell by responding to physiological signals. Proteins synthesized in the cytosol are distributed to their respective organelles, according to their specific amino acid’s sorting sequence. Eukaryotic cells transport packets of components to particular intracellular locations by attaching them to molecular motors that haul them along microtubules and actin filaments. Since intracellular transport heavily relies on microtubules for movement, the components of the cytoskeleton play a vital role in trafficking vesicles between organelles and the plasma membrane by providing mechanical support. Through this pathway, it is possible to facilitate the movement of essential molecules such as membrane‐bounded vesicles and organelles, mRNA, and chromosomes.

Phytomonas is a genus of trypanosomatids that infect plant species. Initially described using existing genera in the family Trypanosomatidae, such as Trypanosoma or Leishmania, the nomenclature of Phytomonas was proposed in 1909 in light of their distinct hosts and morphology. When the term was originally coined, no strict criterion was followed, and the term was adopted by the scientific community to describe flagellate protozoa in plants as a matter of convenience. Members of the taxon are globally distributed and have been discovered in members of over 24 plant families. Of these 24, the two main families that are infected by Phytomonas are Euphorbiaceae and Asclepiadiacae. These protists have been found in hosts between 50° latitude North and South, and thus they can be found on all continents save for Antarctica.

Neobodo are diverse protists belonging to the eukaryotic supergroup Excavata. They are Kinetoplastids in the subclass Bodonidae. They are small, free-living, heterotrophic flagellates with two flagella of unequal length used to create a propulsive current for feeding. As members of Kinetoplastids, they have an evident kinetoplast There was much confusion and debate within the class Kinetoplastid and subclass Bodonidae regarding the classification of the organism, but finally the new genera Neobodo was proposed by Keith Vickerman. Although they are one of the most common flagellates found in freshwater, they are also able to tolerate saltwater Their ability to alternate between both marine and freshwater environments in many parts of the world give them a “cosmopolitan” character. Due to their relatively microscopic size ranging between 4-12 microns, they are further distinguished as heterotrophic nanoflagellates. This small size ratio limits them as bacterivores that swim around feeding on bacteria attached to surfaces or in aggregates.

Petalomonas is a genus of phagotrophic, flagellated euglenoids. Phagotrophic euglenoids are one of the most important forms of flagellates in benthic aquatic systems, playing an important role in microbial food webs. The traits that distinguish this particular genus are highly variable, especially at higher taxa. However, general characteristics such as a rigid cell shape and single emergent flagellum can describe the species among this genus.

References

  1. Allaby, Michael. A dictionary of zoology. Oxford University Press, 2003.
  2. 1 2 Okuda, Kendi, et al. "The cytostome of Trypanosoma cruzi epimastigotes is associated with the flagellar complex." Experimental parasitology 92.4 (1999): 223-231.
  3. 1 2 3 Preston, T. M. "The Form and Function of the Cytostome-Cytopharynx of the Culture Forms of the Elasmobranch Haemoflagellate Trypanosoma raiae Laveran & Mesnil." The Journal of protozoology 16.2 (1969): 320-333.
  4. 1 2 3 Alcantara, Carolina L., et al. "The three-dimensional structure of the cytostome-cytopharynx complex of Trypanosoma cruzi epimastigotes." Journal of cell science 127.10 (2014): 2227-2237
  5. Nisbet, Brenda. Nutrition and feeding strategies in protozoa. Springer Science & Business Media, 2012.
  6. Porto-Carreiro, Isabel, et al. "Trypanosoma cruzi epimastigote endocytic pathway: cargo enters the cytostome and passes through an early endosomal network before storage in reservosomes." European journal of cell biology 79.11 (2000): 858-869.
  7. 1 2 Eger, Iriane, and Maurilio José Soares. "Endocytosis in Trypanosoma cruzi (Euglenozoa: Kinetoplastea) epimastigotes: Visualization of ingested transferrin–gold nanoparticle complexes by confocal laser microscopy." Journal of microbiological methods 91.1 (2012): 101-105.