Glycosome

Last updated

The glycosome is a membrane-enclosed organelle that contains the glycolytic enzymes. The term was first used by Scott and Still in 1968 after they realized that the glycogen in the cell was not static but rather a dynamic molecule. [1] It is found in a few species of protozoa including the Kinetoplastida which include the suborders Trypanosomatida and Bodonina, most notably in the human pathogenic trypanosomes, which can cause sleeping sickness, Chagas's disease, and leishmaniasis. The organelle is bounded by a single membrane and contains a dense proteinaceous matrix. It is believed to have evolved from the peroxisome. [2] This has been verified by work done on Leishmania genetics. [3]

Contents

The glycosome is currently being researched as a possible target for drug therapies.

Glycosomes are unique to kinetoplastids and their sister diplonemids. The term glycosome is also used for glycogen-containing structures found in hepatocytes responsible for storing sugar, but these are not membrane bound organelles. [4]

Glycosomes in the trypanosomatid Trypanosomeglycosomes.jpeg
Glycosomes in the trypanosomatid

Structure

Glycosomes are composed of glycogen and proteins. The proteins are the enzymes that are associated with the metabolism of glycogen. These proteins and glycogen form a complex to make a distinct and separate organelle. [1] The proteins for glycosomes are imported from free cytosolic ribosomes. The proteins imported into the organelle have a specific sequence, a PTS1 ending sequence to make sure they go to the right place. [5] They are similar to alpha-granules in the cytosol of a cell that are filled with glycogen. Glycosomes are typically round-to-oval shape with size varying in each cell. Although glycogen is found in the cytoplasm, that in the glycosome is separate, surrounded by membrane. The membrane is a lipid bilayer. The glycogen that is found within the glycosome is identical to glycogen found freely in the cytosol. [6] Glycosomes can be associated or attached to many different types of organelles. They have been found to be attached to the sarcoplasmic reticulum and its intermediate filaments. Other glycosomes have been found to be attached to myofibrils and mitochondria, rough endoplasmic reticulum, sarcolemma, polyribosomes, or the Golgi apparatus. Glycosome attachment may bestow a functional distinction between them; the glycosomes attached to the myofibrils seem to serve the myosin by providing energy substrates for generation of ATP through glycolysis. The glycosomes in the rough and smooth endoplasmic reticulum make use of its glycogen synthase and phosphorylase phosphatases. [1]

Function

Glycosomes function in many processes in the cell. These processes include glycolysis, purine salvage, beta oxidation of fatty acids, and ether lipid synthesis. [5]

Glycolysis

The main function that the glycosome serves is of the glycolytic pathway that is done inside its membrane. By compartmentalizing glycolysis inside of the glycosome, the cell can be more successful. In the cell, action in the cytosol, the mitochondria, and the glycosome are all completing the function of energy metabolism. This energy metabolism generates ATP through the process of glycolysis. The glycosome is a host of the main glycolytic enzymes in the pathway for glycolysis. This pathway is used to break down fatty acids for their carbon and energy. The entire process of glycolysis does not take place in the glycosome however. Rather, only the Embden-Meyerhof segment where the glucose enters into the glycosome. Importantly, the process in the organelle has no net ATP synthesis. This ATP comes later from processes outside of the glycosome. Inside of the glycosome does need NAD+ for functioning and its regeneration. Fructose 1,6-biphosphate is used in the glycosome as a way to help obtain oxidizing agents to help start glycolysis. The glycosome converts the sugar into 3-phosphoglycerate. [2]

Purine salvage

Another function of glycosomes is purine salvage. The parasites which have glycosomes present in their cells cannot make purine de novo. This purine that is made in the glycosome is then exported out of the glycosome to be used in the cell in nucleic acid. In other cells the enzymes responsible for this are present in the cytosol. These enzymes found in the glycosome to help with synthesis are guanine and adenine phosphoribosyl transferase, hypoxanthine, and xanthine pho tran. All of these enzymes contain a PTS1 sequence at their carboxyl sequence so that they are sent to the glycosome. [5]

Evidence

Microscopic evidence

Microscopic techniques have revealed a lot about the glycosome in the cell and have indeed proven that there is a membrane-bound organelle in the cell for glycogen and its processes. Paul Erlich's findings as early as 1883 noted that from the microscope he could tell that glycogen in the cell was always found with what he called a carrier, later known to be protein. The glycogen itself was also always seen in the cell towards the lower pole in one group, fixed. When scientists tried to stain what was assumed was simple glycogen molecules, the staining had different outcomes. This is due to the fact that they weren't free glycogen molecules but really a glycosome. The glycosome was studied in the microscope by examining the glycosome that was stained with uranyl acetate. The U/Pb that was seen stained was the protein that was part of the glycosome. The glycogen in the glycosome in the cells is normally associated with protein that is two to four times the weight of the glycogen. The glycogen itself however, after purified, is found with very little protein, less than three percent normally, showing that the glycosome is responsible and functions by having the proteins and enzymes needed for the glycogen in the glycosome. With the uranyl staining, as an acid, it would cause dissociation of the protein from the glycogen. The glycogen without the protein would form large aggregates and the stain would be the protein. This gives the illusion of glycogen disappearing as it is not stained, but it dissociates from the protein that it is normally associated with in the glycosome. [1]

Biochemical evidence

There has been a variety of evidence found biochemically to give evidence that glycosomes are present in cells. In the organelle that is assumed to be a glycosome, numerous proteins are found. These include glycogen synthase, phosphorylase, and branching and debranching enzymes for glycogen. All of these are regulatory enzymes that are needed in glycogen synthesis. The initiation of synthesis of glycogen requires glycogenin, found in glycosomes, a protein primer. Glycogen synthase as mentioned helps in glycogen elongation and the removal of the glucose from glycogen is aided by debranching enzymes and phosphorylase. All of these enzymes are found in the glycosome, showing that this organelle complete with glycogen as well is responsible for storing glycogen and separate from the cytosol. [1]

Types

There are two types of glycosomes that are found in cells exhibiting these specialized organelles. These two groups are lyoglycosomes and desmoglycosomes. They differ in their association with other organelles in the cell, along with their relative abundance. Studies have shown that healthy cells have more lyoglycosomes while starved cells have more desmoglycosomes.

Lyoglycosomes

Lyoglycosomes are glycosomes that are free in the cytosol of the cell. These types of glycosomes are affected by acid. They tend to be less electron dense than the other type of glycosome. Lyoglycosomes also are usually found in chains in the cytosol. Because the lyoglycosomes are not bound to tissue, it is possible to extract these glycosomes with water that is boiling. [1]

Desmoglycosomes

Desmoglycosomes are not free in the cytosol but rather are with other organelles or structures in the cell. These structures relate to the other organelles mentioned such as the myofibrils, mitochondria, and endoplasmic reticulum. This accounts for why desmoglycosomes are found in muscle cells. These glycosomes are not affected by acid. These glycosomes are not found to form groups but rather stay separate as single organelles. Because of the high amount of protein that the glycosome associates with, a high electron density is usually observed. Desmoglycosomes are not extractable from boiling water as they are bound to tissue through their connection to protein. [1]

Peroxisome origin

The glycosomes are the most divergent of the different types of organelles stemming from peroxisomes, especially as seen in the trypanosomes. Peroxisomes of higher eukaryotes are very similar to the glycosomes and the glyoxysomes that are found in some plants and fungi. The glycosome shares the same basic level structure of a single membrane and a very dense protein matrix. Some studies have shown that some of the enzymes and pathways that are found in the peroxisome are also seen in glycosomes of some species of the trypanosomes. Also, the targeting sequences on the proteins that are sent to the glycosome for the protein matrix are similar in sequence to those sequences on proteins being imported into the peroxisome. The same is seen in the actual sequences for the proteins going into the matrices for these two organelles, not just the targeting sequences. It has been speculated that the since it has been found that glycosomes possess plastid like proteins, a lateral gene transfer happened long ago from an organism capable of photosynthesis whose genes were transferred to have the resultant peroxisomes and glycosomes. The glycosome itself, along with the peroxisome, lacks a genome. [2]

Potential drug target

Unlike peroxisomes, for most of the trypanosomes their glycosomes are needed for them to be able to survive. Because of this need for the glycosome, it has been suggested as a possible drug target to find a drug to halt its function. When the glycosome is not functioning correctly there is a severe lack of enzymes in the cell. These enzymes are those associated with ether-lipid synthesis or the beta oxidation of certain fatty acids. Cells without glycosomes are deficient in these enzymes as without the compartmentalization of the glycosome the enzymes are degraded in the cell in the cytosol. The organelle keeps metabolism of the enzymes from occurring. For parasites, ether-lipid synthesis is vital to be able to complete its life cycle, making the enzymes protected by the glycosome also vital. [2] In their life cycle, glycolysis partly through the glycosome is very high in the blood stream form comparatively to the pro-cyclic form. The glycosomal glycolysis pathway is necessary in stress situations for the pathogen as glycolysis can be started when the substrates for the pathway are available even when ATP is not available yet. So as this organelle is so essential for the trypanosome, if a drug could target this organelle, it could be a successful therapy as studies have shown without the glycosome parasite death occurs. [7]

By taking advantage of the pores in the membrane of the glycosome, a drug can enter the organelle and be used to kill the trypanosoma brucei Channel-Forming-Activities-in-the-Glycosomal-Fraction-from-the-Bloodstream-Form-of-Trypanosoma-brucei.jpg
By taking advantage of the pores in the membrane of the glycosome, a drug can enter the organelle and be used to kill the trypanosoma brucei

Related Research Articles

Endoplasmic reticulum Irregular network of membranes coterminous with the outer nuclear membrane in eukaryote cytoplasm that form a meshwork of tubular channels, often expanded into cisternae

The endoplasmic reticulum (ER) is, in essence, the transportation system of the eukaryotic cell, and has many other important functions such as protein folding. It is a type of organelle made up of two subunits – rough endoplasmic reticulum (RER), and smooth endoplasmic reticulum (SER). The endoplasmic reticulum is found in most eukaryotic cells and forms an interconnected network of flattened, membrane-enclosed sacs known as cisternae, and tubular structures in the SER. The membranes of the ER are continuous with the outer nuclear membrane. The endoplasmic reticulum is not found in red blood cells, or spermatozoa.

Endomembrane system

The endomembrane system is composed of the different membranes that are suspended in the cytoplasm within a eukaryotic cell. These membranes divide the cell into functional and structural compartments, or organelles. In eukaryotes the organelles of the endomembrane system include: the nuclear membrane, the endoplasmic reticulum, the Golgi apparatus, lysosomes, vesicles, endosomes, and plasma (cell) membrane among others. The system is defined more accurately as the set of membranes that form a single functional and developmental unit, either being connected directly, or exchanging material through vesicle transport. Importantly, the endomembrane system does not include the membranes of chloroplasts or mitochondria, but might have evolved from the latter.

Glycolysis Metabolic pathway

Glycolysis (from glycose, an older term for glucose + -lysis degradation) is the metabolic pathway that converts glucose C6H12O6, into pyruvate, CH3COCOO (pyruvic acid), and a hydrogen ion, H+. The free energy released in this process is used to form the high-energy molecules ATP (adenosine triphosphate) and NADH (reduced nicotinamide adenine dinucleotide). Glycolysis is a sequence of ten enzyme-catalyzed reactions. Most monosaccharides, such as fructose and galactose, can be converted to one of these intermediates. The intermediates may also be directly useful rather than just utilized as steps in the overall reaction. For example, the intermediate dihydroxyacetone phosphate (DHAP) is a source of the glycerol that combines with fatty acids to form fat.

Mitochondrion organelle in eukaryotic cells responsible for respiration

The mitochondrion is a double-membrane-bound organelle found in most eukaryotic organisms. Some cells in some multicellular organisms lack mitochondria. A number of unicellular organisms, such as microsporidia, parabasalids, and diplomonads, have reduced or transformed their mitochondria into other structures. To date, only one eukaryote, Monocercomonoides, is known to have completely lost its mitochondria, and one multicellular organism, Henneguya salminicola, is known to have retained mitochondrion-related organelles in association with a complete loss of their mitochondrial genome.

Metabolism The set of life-sustaining chemical transformations within the cells of organisms

Metabolism is the set of life-sustaining chemical reactions in organisms. The three main purposes of metabolism are: the conversion of food to energy to run cellular processes; the conversion of food/fuel to building blocks for proteins, lipids, nucleic acids, and some carbohydrates; and the elimination of metabolic wastes. These enzyme-catalyzed reactions allow organisms to grow and reproduce, maintain their structures, and respond to their environments..

Metabolic pathway

In biochemistry, a metabolic pathway is a linked series of chemical reactions occurring within a cell. The reactants, products, and intermediates of an enzymatic reaction are known as metabolites, which are modified by a sequence of chemical reactions catalyzed by enzymes. In most cases of a metabolic pathway, the product of one enzyme acts as the substrate for the next. However, side products are considered waste and removed from the cell. These enzymes often require dietary minerals, vitamins, and other cofactors to function.

Peroxisome Type of organelle

A peroxisome (IPA: [pɛɜˈɹɒksɪˌsoʊm]) is a membrane-bound organelle (formerly known as a microbody), found in the cytoplasm of virtually all eukaryotic cells. Peroxisomes are oxidative organelles. Frequently, molecular oxygen serves as a co-substrate, from which hydrogen peroxide (H2O2) is then formed. Peroxisomes owe their name to hydrogen peroxide generating and scavenging activities. They perform key roles in lipid metabolism and the conversion of reactive oxygen species. Peroxisomes are involved in the catabolism of very long chain fatty acids, branched chain fatty acids, bile acid intermediates (in the liver), D-amino acids, and polyamines, the reduction of reactive oxygen species – specifically hydrogen peroxide. – and the biosynthesis of plasmalogens, i.e., ether phospholipids critical for the normal function of mammalian brains and lungs They also contain approximately 10% of the total activity of two enzymes (Glucose-6-phosphate dehydrogenase and 6-Phosphogluconate dehydrogenase) in the pentose phosphate pathway, which is important for energy metabolism. It is vigorously debated whether peroxisomes are involved in isoprenoid and cholesterol synthesis in animals. Other known peroxisomal functions include the glyoxylate cycle in germinating seeds ("glyoxysomes"), photorespiration in leaves, glycolysis in trypanosomes ("glycosomes"), and methanol and/or amine oxidation and assimilation in some yeasts.

Protein targeting or protein sorting is the biological mechanism by which proteins are transported to their appropriate destinations in the cell or outside it. Proteins can be targeted to the inner space of an organelle, different intracellular membranes, plasma membrane, or to the exterior of the cell via secretion. This delivery process is carried out based on information contained in the protein itself. Correct sorting is crucial for the cell; errors can lead to diseases.

Kinase Enzyme catalyzing transfer of phosphate groups onto specific substrates

In biochemistry, a kinase is an enzyme that catalyzes the transfer of phosphate groups from high-energy, phosphate-donating molecules to specific substrates. This process is known as phosphorylation, where the substrate gains a phosphate group and the high-energy ATP molecule donates a phosphate group. This transesterification produces a phosphorylated substrate and ADP. Conversely, it is referred to as dephosphorylation when the phosphorylated substrate donates a phosphate group and ADP gains a phosphate group. These two processes, phosphorylation and dephosphorylation, occur four times during glycolysis.

Cellular respiration Metabolic reactions in the cells of organisms converting chemical energy from oxygen molecules or nutrients into adenosine triphosphate (ATP) while releasing waste byproducts.

Cellular respiration is a set of metabolic reactions and processes that take place in the cells of organisms to convert chemical energy from oxygen molecules or nutrients into adenosine triphosphate (ATP), and then release waste products. The reactions involved in respiration are catabolic reactions, which break large molecules into smaller ones, releasing energy because weak high-energy bonds, in particular in molecular oxygen, are replaced by stronger bonds in the products. Respiration is one of the key ways a cell releases chemical energy to fuel cellular activity. The overall reaction occurs in a series of biochemical steps, some of which are redox reactions. Although cellular respiration is technically a combustion reaction, it clearly does not resemble one when it occurs in a living cell because of the slow, controlled release of energy from the series of reactions.

Hexokinase

A hexokinase is an enzyme that phosphorylates hexoses, forming hexose phosphate. In most organisms, glucose is the most important substrate for hexokinases, and glucose-6-phosphate is the most important product. Hexokinase possesses the ability to transfer an inorganic phosphate group from ATP to a substrate.

Gluconeogenesis

Gluconeogenesis (GNG) is a metabolic pathway that results in the generation of glucose from certain non-carbohydrate carbon substrates. It is a ubiquitous process, present in plants, animals, fungi, bacteria, and other microorganisms. In vertebrates, gluconeogenesis takes place mainly in the liver and, to a lesser extent, in the cortex of the kidneys. It is one of two primary mechanisms - the other being degradation of glycogen (glycogenolysis) - used by humans and many other animals to maintain blood glucose levels, avoiding low levels (hypoglycemia). In ruminants, because dietary carbohydrates tend to be metabolized by rumen organisms, gluconeogenesis occurs regardless of fasting, low-carbohydrate diets, exercise, etc. In many other animals, the process occurs during periods of fasting, starvation, low-carbohydrate diets, or intense exercise.

Glucagon

Glucagon is a peptide hormone, produced by alpha cells of the pancreas. It works to raise the concentration of glucose and fatty acids in the bloodstream, and is considered to be the main catabolic hormone of the body. It is also used as a medication to treat a number of health conditions. Its effect is opposite to that of insulin, which lowers extracellular glucose. It is produced from proglucagon, encoded by the GCG gene.

The term amphibolic is used to describe a biochemical pathway that involves both catabolism and anabolism. Catabolism is a degradative phase of metabolism in which large molecules are converted into smaller and simpler molecules, which involves two types of reactions. First, hydrolysis reactions, in which catabolism is the breaking apart of molecules into smaller molecules to release energy. Examples of catabolic reactions are digestion and cellular respiration, where sugars and fats are broken down for energy. Breaking down a protein into amino acids, or a triglyceride into fatty acids, or a disaccharide into monosaccharides are all hydrolysis or catabolic reactions. Second, oxidation reactions involve the removal of hydrogens and electrons from an organic molecule. Anabolism is the biosynthesis phase of metabolism in which smaller simple precursors are converted to large and complex molecules of the cell. Anabolism has two classes of reactions. The first are dehydration synthesis reactions; these involve the joining of smaller molecules together to form larger, more complex molecules. These include the formation of carbohydrates, proteins, lipids and nucleic acids. The second are reduction reactions, in which hydrogens and electrons are added to a molecule. Whenever that is done, molecules gain energy.

Glucose 6-phosphate

Glucose 6-phosphate is a glucose sugar phosphorylated at the hydroxy group on carbon 6. This dianion is very common in cells as the majority of glucose entering a cell will become phosphorylated in this way.

Fatty acid metabolism consists of various metabolic processes involving or closely related to fatty acids, a family of molecules classified within the lipid macronutrient category. These processes can mainly be divided into catabolic processes that generate energy, and anabolic processes that create biologically important molecules such as triglycerides, phospholipids, second messengers, local hormones and ketone bodies.

Beta oxidation Process of fatty acid breakdown

In biochemistry and metabolism, beta-oxidation is the catabolic process by which fatty acid molecules are broken down in the cytosol in prokaryotes and in the mitochondria in eukaryotes to generate acetyl-CoA, which enters the citric acid cycle, and NADH and FADH2, which are co-enzymes used in the electron transport chain. It is named as such because the beta carbon of the fatty acid undergoes oxidation to a carbonyl group. Beta-oxidation is primarily facilitated by the mitochondrial trifunctional protein, an enzyme complex associated with the inner mitochondrial membrane, although very long chain fatty acids are oxidized in peroxisomes.

Endoplasm

Endoplasm generally refers to the inner, dense part of a cell's cytoplasm. This is opposed to the ectoplasm which is the outer (non-granulated) layer of the cytoplasm, which is typically watery and immediately adjacent to the plasma membrane. These two terms are mainly used to describe the cytoplasm of the amoeba, a protozoan, eukaryotic cell. The nucleus is separated from the endoplasm by the nuclear envelope. The different makeups/viscosities of the endoplasm and ectoplasm contribute to the amoeba's locomotion through the formation of a pseudopod. However, other types of cells have cytoplasm divided into endo- and ectoplasm. The endoplasm, along with its granules, contains water, nucleic acids amino acids, carbohydrates, inorganic ions, lipids, enzymes, and other molecular compounds. It is the site of most cellular processes as it houses the organelles that make up the endomembrane system, as well as those that stand alone. The endoplasm is necessary for most metabolic activities, including cell division.

Tumor metabolome

The study of the tumor metabolism, also known as tumor metabolome describes the different characteristic metabolic changes in tumor cells. The characteristic attributes of the tumor metabolome are high glycolytic enzyme activities, the expression of the pyruvate kinase isoenzyme type M2, increased channeling of glucose carbons into synthetic processes, such as nucleic acid, amino acid and phospholipid synthesis, a high rate of pyrimidine and purine de novo synthesis, a low ratio of Adenosine triphosphate and Guanosine triphosphate to Cytidine triphosphate and Uridine triphosphate, low Adenosine monophosphate levels, high glutaminolytic capacities, release of immunosuppressive substances and dependency on methionine.

Outline of cell biology Overview of and topical guide to cell biology

The following outline is provided as an overview of and topical guide to cell biology:

References

  1. 1 2 3 4 5 6 7 Rybicka, Kielan (June 1996). "Glycosomes- the organelles of glycogen metabolism". Tissue and Cell. 28 (3): 253–265. doi:10.1016/s0040-8166(96)80013-9. PMID   8701432.
  2. 1 2 3 4 Parsons M (2004). "Glycosomes: parasites and the divergence of peroxisomal purpose". Mol Microbiol. 53 (3): 717–24. doi:10.1111/j.1365-2958.2004.04203.x. PMID   15255886.
  3. Flaspohler, J.A.; Rickoll, W.L.; Beverley, S.M.; Parsons, M. (1997). "Functional identification of a Leishmania gene related to peroxin 2 reveals common ancestry of glycosomes and peroxisomes". Mol. Cell. Biol. 17 (3): 1093–1101. doi:10.1128/mcb.17.3.1093. PMC   231834 . PMID   9032236.
  4. Elaine, N; Jon Mallat, P B W (2008). Human Anatomy. San Francisco: Benjamin Cummings (Pearson). p. 697.
  5. 1 2 3 Parsons, Marilyn; Furuya, T.; Pal, S.; Kessler, P. (June 2001). "Biogenesis and function of peroxisomes and glycosomes". Molecular and Biochemical Parasitology. 115 (1): 19–28. doi:10.1016/s0166-6851(01)00261-4. PMID   11377736.
  6. White, J (1 July 1999). "Platelet glycosomes". Platelets (Edinburgh). 10 (4): 242–6. doi:10.1080/09537109976095. PMID   16801099.
  7. Galland, Nathalie; de Walque, Voncken; Verlinde, Michels (May 2010). "An internal sequence targets Trypanosoma brucei triosephosphate isomerase to glycosomes". Molecular and Biochemical Parasitology. 171 (1): 45–49. doi:10.1016/j.molbiopara.2010.01.002. PMID   20138091.