Slime mold

Last updated

Comatricha nigra (myxogastria) with developing fruiting bodies (sporangia) Comatricha nigra 176600092.jpg
Comatricha nigra (myxogastria) with developing fruiting bodies (sporangia)

Slime mold or slime mould is an informal name given to a polyphyletic assemblage of unrelated eukaryotic organisms in the Stramenopiles, Rhizaria, Discoba, Amoebozoa and Holomycota clades. Most are microscopic; those in the Myxogastria form larger plasmodial slime molds visible to the naked eye. The slime mold life cycle includes a free-living single-celled stage and the formation of spores. Spores are often produced in macroscopic multicellular or multinucleate fruiting bodies that may be formed through aggregation or fusion; aggregation is driven by chemical signals called acrasins. Slime molds contribute to the decomposition of dead vegetation; some are parasitic.

Contents

Most slime molds are terrestrial and free-living, typically in damp shady habitats such as in or on the surface of rotting wood. Some myxogastrians and protostelians are aquatic or semi-aquatic. The phytomyxea are parasitic, living inside their plant hosts. Geographically, slime molds are cosmopolitan in distribution. A small number of species occur in regions as dry as the Atacama Desert and as cold as the Arctic; they are abundant in the tropics, especially in rainforests.

Slime molds have a variety of behaviors otherwise seen in animals with brains. Species such as Physarum polycephalum have been used to simulate traffic networks. Some species have traditionally been eaten in countries such as Ecuador.

Evolution

Taxonomic history

Lycogala epidendrum was the first slime mold to be discussed scientifically, by Thomas Panckow in 1654. Lycogala epidendrum - Pink and brown slime molds.jpg
Lycogala epidendrum was the first slime mold to be discussed scientifically, by Thomas Panckow in 1654.

The first account of slime molds was Thomas Panckow  [ de ]'s 1654 discussion of Lycogala epidendrum . He called it Fungus cito crescentes, "a fast-growing fungus". [2] [1]

German mycologist Heinrich Anton de Bary, in 1860 and 1887, classified the Myxomycetes (plasmodial slime molds) and Acrasieae (cellular slime molds) as Mycetozoa, a new class. He also introduced a "Doubtful Mycetozoa" section for Plasmodiophora (now in Phytomyxea) and Labyrinthula , emphasizing their distinction from plants and fungi. [3] [4] In 1880, the French botanist Philippe van Tieghem analyzed the two groups further. [4] In 1868, the German biologist Ernst Haeckel placed the Mycetozoa in a kingdom he named Protista. [4] In 1885, the British zoologist Ray Lankester grouped the Mycetozoa alongside the Proteomyxa as part of the Gymnomyxa in the phylum Protozoa. [4] Arthur and Gulielma Lister published monographs of the group in 1894, 1911, and 1925. [5] [6]

In 1932 and 1960, the American mycologist George Willard Martin argued that the slime molds evolved from fungi. [7] [8] In 1956, the American biologist Herbert Copeland placed the Mycetozoa (the myxomycetes and plasmodiophorids) and the Sarkodina (the labyrinthulids and the cellular slime molds) in a phylum called Protoplasta, which he placed alongside the fungi and the algae in a new kingdom, Protoctista. [4] [9]

In 1969, the taxonomist R. H. Whittaker observed that slime molds were highly conspicuous and distinct within the Fungi, the group to which they were then classified. He concurred with Lindsay S. Olive's proposal to reclassify the Gymnomycota, which includes slime molds, as part of the Protista. [10] Whittaker placed three phyla, namely the Myxomycota, Acrasiomycota, and Labyrinthulomycota in a subkingdom Gymnomycota within the Fungi. [4] The same year, Martin and Alexopoulos published their influential textbook The Myxomycetes. [6]

In 1975, Olive distinguished the dictyostelids and the acrasids as separate groups. [4] In 1992, David J. Patterson and M. L. Sogin proposed that the dictyostelids diverged before plants, animals, and fungi. [11]

Phylogeny

Slime molds have little or no fossil history, as might be expected given that they are small and soft-bodied. [12] The grouping is polyphyletic, consisting of multiple clades (emphasised in the phylogenetic tree) widely scattered across the Eukaryotes. Paraphyletic groups are shown in quotation marks: [13] [14]

Eukaryotes

Diversity

Various estimates of the number of species of slime molds agree that there are around 1000 species, most being Myxogastria. Collection of environmental DNA gives a higher estimate, from 1200 to 1500 species. [6] These are diverse both taxonomically and in appearance, the largest and most familiar species being among the Myxogastria. The growth forms most commonly noticed are the sporangia, the spore-forming bodies, which are often roughly spherical; these may be directly on the surface, such as on rotting wood, or may be on a thin stalk which elevates the spores for release above the surface. Other species have the spores in a large mass, which may be visited by insects for food; they disperse spores when they leave. [15]

Macroscopic, plasmodial slime molds: Myxogastria

The Myxogastria or plasmodial slime molds are the only macroscopic scale slime molds; they gave the group its informal name, since for part of their life cycle they are slimy to the touch. [16] A myxogastrian consists of a large cell with thousands of nuclei within a single membrane without walls, forming a syncytium. [17] Most are smaller than a few centimeters, but some species may reach sizes up to several square meters, and in the case of Brefeldia maxima , a mass of up to 20 kilograms (44 lb). [18] [19] [20]

Cellular slime molds: Dictyosteliida

The Dictyosteliida or cellular slime molds do not form huge coenocytes like the Myxogastria; their amoebae remain individual for most of their lives as individual unicellular protists, feeding on microorganisms. When food is depleted and they are ready to form sporangia, they form swarms. The amoebae join up into a tiny multicellular slug which crawls to an open lit place and grows into a fruiting body, a sorocarp. Some of the amoebae become spores to begin the next generation, but others sacrifice themselves to become a dead stalk, lifting the spores up into the air. [23] [24]

Protosteliida

The Protosteliida, a polyphyletic group, have characters intermediate between the previous two groups, but they are much smaller, the fruiting bodies only forming one to a few spores. [25]

Copromyxa

The lobosans, a paraphyletic group of amoebae, include the Copromyxa slime molds. [26] [27]

Non-amoebozoan slime molds

Among the non-amoebozoan slime molds are the Acrasids, which have sluglike amoebae. In locomotion, the amoebae's pseudopodia are eruptive, meaning that hemispherical bulges appear at the front. [28] The Phytomyxea are obligate parasites, with hosts among the plants, diatoms, oomycetes, and brown algae. They cause plant diseases like cabbage club root and powdery scab. [29] The Labyrinthulomycetes are marine slime nets, forming labyrinthine networks of tubes in which amoeba without pseudopods can travel. [30] The Fonticulida are cellular slime molds that form a fruiting body in a "volcano" shape. [31]

Distribution, habitats, and ecology

Slime mold beetles such as Sphindus dubius feed exclusively on slime molds. Sphindus dubius (Gyllenhal, 1808).png
Slime mold beetles such as Sphindus dubius feed exclusively on slime molds.

Slime molds, with their small size and moist surface, live mostly in damp habitats including shaded forests, rotting wood, fallen or living leaves, and on bryophytes. [32] [18] Most Myxogastria are terrestrial, [18] though some, like Didymium aquatilis are aquatic, [33] [34] and D. nigripes is semi-aquatic. [34] Myxogastria are not limited to wet regions; 34 species are known from Saudi Arabia, living on bark, in plant litter, and rotting wood, even in deserts. [35] They occur, too, in Arizona's Sonoran Desert (46 species), and in Chile's exceptionally dry Atacama Desert (24 species). In contrast, the semi-dry Tehuacán-Cuicatlán Biosphere Reserve has 105 species, and Russia and Kazakhstan's Volga river basin has 158 species. [35] In tropical rainforests of Latin America, species such as of Arcyria and Didymium are commonly epiphyllous, growing on the leaves of liverworts. [36]

The dictyostelids are mostly terrestrial. [37] On Changbai Mountain in China, six species of dictyostelids were found in forest soils at elevations up to 2,038 m (6,686 ft), the highest recorded species there being Dictyostelium mucoroides. [38] The protostelids live mainly on dead plant matter, where they consume the spores of bacteria, yeasts, and fungi. [37] They include some aquatic species, which live on dead plant parts submerged in ponds. [33] Cellular slime molds are most numerous in the tropics, decreasing with latitude, but are cosmopolitan in distribution, occurring in soil even in the Arctic and the Antarctic. [39] In the Alaskan tundra, the only slime molds are the dictyostelids D. mucoroides and D. sphaerocephalum. [36]

The species of Copromyxa are coprophilous, feeding on dung. [27]

Some myxogastrians have their spores dispersed by animals. The slime mold fly Epicypta testata lay its eggs within the spore mass of Enteridium lycoperdon , which the larvae feed on. These pupate, and the hatching adults carry and disperse spores that have stuck to them. [21] While various insects consume slime molds, Sphindidae slime mold beetles, both larvae and adults, exclusively feed on them. [40]

Life cycle

Plasmodial slime molds

Long strands of Physarum polycephalum streaming along as it forms a plasmodium with many nuclei without individual cell membranes Physarum polycephalum strain LU352 - 4.jpg
Long strands of Physarum polycephalum streaming along as it forms a plasmodium with many nuclei without individual cell membranes

Plasmodial slime molds begin life as amoeba-like cells. These unicellular amoebae are commonly haploid and feed on small prey such as bacteria, yeast cells, and fungal spores by phagocytosis, engulfing them with its cell membrane. These amoebae can mate if they encounter the correct mating type and form zygotes that then grow into plasmodia. These contain many nuclei without cell membranes between them, and can grow to meters in size. The species Fuligo septica is often seen as a slimy yellow network in and on rotting logs. The amoebae and the plasmodia engulf microorganisms. [41] The plasmodium grows into an interconnected network of protoplasmic strands. [42] Within each protoplasmic strand, the cytoplasmic contents rapidly stream, periodically reversing direction. The streaming protoplasm within a plasmodial strand can reach speeds of up to 1.35 mm per second in Physarum polycephalum, the fastest for any microorganism. [43]

Life cycle of a plasmodial slime mold. Haploid gametes undergo sexual fusion to form a diploid cell. Its nucleus divides (but the cell does not) to form a multinucleate plasmodium. Meiosis halves the number of chromosomes to form haploid cells with just one nucleus. Plasmodial slime mold life cycle English.png
Life cycle of a plasmodial slime mold. Haploid gametes undergo sexual fusion to form a diploid cell. Its nucleus divides (but the cell does not) to form a multinucleate plasmodium. Meiosis halves the number of chromosomes to form haploid cells with just one nucleus.

Slime molds are isogamous, which means that their gametes (reproductive cells) are all the same size, unlike the eggs and sperms of animals. [45] Physarum polycephalum has three genes involved in reproduction: matA and matB, with thirteen variants each, and matC with three variants. Each reproductively mature slime mold is diploid, meaning that it contains two copies of each of the three reproductive genes. [46] When P. polycephalum is ready to make its reproductive cells, it grows a bulbous extension of its body to contain them. [47] Each cell has a random combination of the genes that the slime mold contains within its genome. Therefore, it can create cells of up to eight different gene types. Released cells then independently seek another compatible cell for fusion. Other individuals of P. polycephalum may contain different combinations of the matA, matB, and matC genes, allowing over 500 possible variations. It is advantageous for organisms with this type of reproductive cell to have many mating types because the likelihood of the cells finding a partner is greatly increased, and the risk of inbreeding is drastically reduced. [46]

Cellular slime molds

The cellular slime molds are a group of approximately 150 described species. They occur primarily in the humus layer of forest soils [48] and feed on bacteria but also are found in animal dung and agricultural fields. They exist as single-celled organisms while food is plentiful. When food is in short supply, many of the single-celled amoebae congregate and start moving as a single body, called a 'slug'. The ability of the single celled organisms to aggregate into multicellular forms are why they are also called the social amoebae. In this state they are sensitive to airborne chemicals and can detect food sources. They readily change the shape and function of parts, and may form stalks that produce fruiting bodies, releasing countless spores, light enough to be carried on the wind or on passing animals. [23] The cellular slime mold Dictyostelium discoideum has many different mating types. When this organism has entered the stage of reproduction, it releases a chemical attractant. [49] When it comes time for the cells to fuse, Dictyostelium discoideum has mating types of its own that dictate which cells are compatible with each other. There are at least eleven mating types; macrocysts form after cell contact between compatible mating types. [50]

Chemical signals

The first acrasin to be discovered was cyclic AMP, a small molecule common in cells. Acrasins are signals that cause cellular slime mold amoebae to aggregate. CAMP.svg
The first acrasin to be discovered was cyclic AMP, a small molecule common in cells. Acrasins are signals that cause cellular slime mold amoebae to aggregate.

The chemicals that aggregate cellular slime molds are small molecules called acrasins; motion towards a chemical signal is called chemotaxis. The first acrasin to be discovered was cyclic adenosine monophosphate (cyclic AMP), a common cell signaling molecule, in Dictyostelium discoideum. During the aggregation phase of their life cycle, Dictyostelium discoideum amoebae communicate with each other using traveling waves of cyclic AMP. [51] [52] [53] There is an amplification of cyclic AMP when they aggregate. [54] Pre-stalk cells move toward cyclic AMP, but pre-spore cells ignore the signal. [55] Other acrasins exist; the acrasin for Polysphondylium violaceum , purified in 1983, is the dipeptide glorin. [56] Calcium ions too serve to attract slime mold amoebae, at least at short distances. It has been suggested that acrasins may be taxon-specific, since specificity is required to form an aggregation of genetically similar cells. Many dictyostelid species indeed do not respond to cyclic AMP, but as of 2023 their acrasins remained unknown. [57]

Study

Use in research and teaching

The practical study of slime molds was facilitated by the introduction of the "moist culture chamber" by H. C. Gilbert and G. W. Martin in 1933. [58] Slime molds can be used to teach convergent evolution, as the habit of forming a stalk with a sporangium that can release spores into the air, off the ground, has evolved repeatedly, such as in myxogastria (eukaryotes) and in myxobacteria (prokaryotes). [59] Further, both the (macroscopic) dictyostelids and the (microscopic) protostelids have a phase with motile amoebae and a phase with a stalk; in the protostelids, the stalk is tiny, supporting just one spore, but the logic of airborne spore dispersal is the same. [59]

O. R. Collins showed that the slime mold Didymium iridis had two strains (+ and −) of cells, equivalent to gametes, that these could form immortal cell lines in culture, and that the system was controlled by alleles of a single gene. This made the species a model organism for exploring incompatibility, asexual reproduction, and mating types. [59]

Biochemicals

Slime molds have been studied for their production of unusual organic compounds, including pigments, antibiotics, and anti-cancer drugs. [59] Pigments include naphthoquinones, physarochrome A, and compounds of tetramic acid. Bisindolylmaleimides produced by Arcyria denudata include some phosphorescent compounds. [60] The sporophores (fruiting bodies) of Arcyria denudata are colored red by arcyriaflavins A–C, which contain an unusual indolo[2,3-a]carbazole alkaloid ring. [61] By 2022, more than 100 pigments had been isolated from slime molds, mostly from sporophores. It has been suggested that the many yellow-to-red pigments might be useful in cosmetics. [15] Some 42% of patients with seasonal allergic rhinitis reacted to myxogastrian spores, so the spores may contribute significantly as airborne allergens. [62]

Computation

Slime molds share some similarities with neural systems in animals. [63] The membranes of both slime molds and neural cells contain receptor sites, which alter electrical properties of the membrane when it is bound. [64] Therefore, some studies on the early evolution of animal neural systems are inspired by slime molds. [65] [66] [67] When a slime mold mass or mound is physically separated, the cells find their way back to re-unite. Studies on Physarum polycephalum have even shown the organism to have an ability to learn and predict periodic unfavorable conditions in laboratory experiments. [68] John Tyler Bonner, a professor of ecology known for his studies of slime molds, argues that they are "no more than a bag of amoebae encased in a thin slime sheath, yet they manage to have various behaviors that are equal to those of animals who possess muscles and nerves with ganglia – that is, simple brains." [69]

The slime mold algorithm is a meta-heuristic algorithm, based on the behavior of aggregated slime molds as they stream in search of food. It is described as a simple, efficient, and flexible way of solving optimization problems, such as finding the shortest path between nodes in a network. However, it can become trapped in a local optimum. [70]

Toshiyuki Nakagaki and colleagues studies slime molds and their abilities to solve mazes by placing nodes at two point separated by a maze of plastic film. The mold explored all possible paths and solves it for the shortest path. [71]

Traffic system inspirations

Physarum polycephalum network grown in a period of 26 hours (6 stages shown) to simulate greater Tokyo's rail network Physarum polycephalum network.jpg
Physarum polycephalum network grown in a period of 26 hours (6 stages shown) to simulate greater Tokyo's rail network

Atsushi Tero and colleagues grew Physarum in a flat wet dish, placing the mold in a central position representing Tokyo, and oat flakes surrounding it corresponding to the locations of other major cities in the Greater Tokyo Area. As Physarum avoids bright light, light was used to simulate mountains, water and other obstacles in the dish. The mold first densely filled the space with plasmodia, and then thinned the network to focus on efficiently connected branches. The network closely resembled Tokyo's rail system. [72] [73] P. polycephalum was used in experimental laboratory approximations of motorway networks of 14 geographical areas: Australia, Africa, Belgium, Brazil, Canada, China, Germany, Iberia, Italy, Malaysia, Mexico, the Netherlands, UK and US. [74] [75] [76] The filamentary structure of P. polycephalum forming a network to food sources is similar to the large scale galaxy filament structure of the universe. This observation has led astronomers to use simulations based on the behaviour of slime molds to inform their search for dark matter. [77] [78]

Use as food

In central Mexico, the false puffball Enteridium lycoperdon was traditionally used as food; it was one of the species which mushroom-collectors or hongueros gathered on trips into the forest in the rainy season. One of its local names is "cheese mushroom", so called for its texture and flavor when cooked. It was salted, wrapped in a maize leaf, and baked in the ashes of a campfire; or boiled and eaten with maize tortillas. Fuligo septica was similarly collected in Mexico, cooked with onions and peppers and eaten in a tortilla. In Ecuador, Lycogala epidendrum was called "yakich" and eaten raw as an appetizer. [79]

Oscar Requejo and N. Floro Andres-Rodriguez suggest that Fuligo septica may have inspired Irvin Yeaworth's 1958 film The Blob , in which a giant amoeba from space sets about engulfing people in a small American town. [79]

See also

Related Research Articles

<span class="mw-page-title-main">Dictyostelid</span> Group of slime moulds

The dictyostelids or cellular slime molds are a group of slime molds or social amoebae.

<span class="mw-page-title-main">Mycetozoa</span> Infraphylum of protists

Mycetozoa is a polyphyletic grouping of slime molds. It was originally thought to be a monophyletic clade, but recently it was discovered that protostelia are a polyphyletic group within Conosa.

<i>Dictyostelium</i> Genus of slime molds

Dictyostelium is a genus of single- and multi-celled eukaryotic, phagotrophic bacterivores. Though they are Protista and in no way fungal, they traditionally are known as "slime molds". They are present in most terrestrial ecosystems as a normal and often abundant component of the soil microflora, and play an important role in the maintenance of balanced bacterial populations in soils.

<span class="mw-page-title-main">Amoebozoa</span> Phylum of protozoans

Amoebozoa is a major taxonomic group containing about 2,400 described species of amoeboid protists, often possessing blunt, fingerlike, lobose pseudopods and tubular mitochondrial cristae. In traditional classification schemes, Amoebozoa is usually ranked as a phylum within either the kingdom Protista or the kingdom Protozoa. In the classification favored by the International Society of Protistologists, it is retained as an unranked "supergroup" within Eukaryota. Molecular genetic analysis supports Amoebozoa as a monophyletic clade. Modern studies of eukaryotic phylogenetic trees identify it as the sister group to Opisthokonta, another major clade which contains both fungi and animals as well as several other clades comprising some 300 species of unicellular eukaryotes. Amoebozoa and Opisthokonta are sometimes grouped together in a high-level taxon, named Amorphea. Amoebozoa includes many of the best-known amoeboid organisms, such as Chaos, Entamoeba, Pelomyxa and the genus Amoeba itself. Species of Amoebozoa may be either shelled (testate) or naked, and cells may possess flagella. Free-living species are common in both salt and freshwater as well as soil, moss and leaf litter. Some live as parasites or symbionts of other organisms, and some are known to cause disease in humans and other organisms.

<i>Physarum polycephalum</i> Species of slime mold, model organism

Physarum polycephalum, an acellular slime mold or myxomycete popularly known as "the blob", is a protist with diverse cellular forms and broad geographic distribution. The “acellular” moniker derives from the plasmodial stage of the life cycle: the plasmodium is a bright yellow macroscopic multinucleate coenocyte shaped in a network of interlaced tubes. This stage of the life cycle, along with its preference for damp shady habitats, likely contributed to the original mischaracterization of the organism as a fungus. P. polycephalum is used as a model organism for research into motility, cellular differentiation, chemotaxis, cellular compatibility, and the cell cycle.

<span class="mw-page-title-main">Acrasidae</span> Family of slime moulds

The family Acrasidae is a family of slime molds which belongs to the excavate group Percolozoa. The name element acrasio- comes from the Greek akrasia, meaning "acting against one's judgement". This group consists of cellular slime molds.

<span class="mw-page-title-main">Eumycetozoa</span> Taxonomic group of slime molds

Eumycetozoa, or true slime molds, is a diverse group of protists that behave as slime molds and develop fruiting bodies, either as sorocarps or as sporocarps. It is a monophyletic group or clade within the phylum Amoebozoa that contains the myxogastrids, dictyostelids and protosporangiids.

Each species of slime mold has its own specific chemical messenger, which are collectively referred to as acrasins. These chemicals signal that many individual cells aggregate to form a single large cell or plasmodium. One of the earliest acrasins to be identified was cyclic AMP, found in the species Dictyostelium discoideum by Brian Shaffer, which exhibits a complex swirling-pulsating spiral pattern when forming a pseudoplasmodium.

Multinucleate cells are eukaryotic cells that have more than one nucleus, i.e., multiple nuclei share one common cytoplasm. Mitosis in multinucleate cells can occur either in a coordinated, synchronous manner where all nuclei divide simultaneously or asynchronously where individual nuclei divide independently in time and space. Certain organisms may have a multinuclear stage of their life cycle. For example, slime molds have a vegetative, multinucleate life stage called a plasmodium.

<i>Dictyostelium discoideum</i> Species of slime mould

Dictyostelium discoideum is a species of soil-dwelling amoeba belonging to the phylum Amoebozoa, infraphylum Mycetozoa. Commonly referred to as slime mold, D. discoideum is a eukaryote that transitions from a collection of unicellular amoebae into a multicellular slug and then into a fruiting body within its lifetime. Its unique asexual life cycle consists of four stages: vegetative, aggregation, migration, and culmination. The life cycle of D. discoideum is relatively short, which allows for timely viewing of all stages. The cells involved in the life cycle undergo movement, chemical signaling, and development, which are applicable to human cancer research. The simplicity of its life cycle makes D. discoideum a valuable model organism to study genetic, cellular, and biochemical processes in other organisms.

<span class="mw-page-title-main">Protosteliales</span> Group of slime moulds

Protosteliomycetes/Protosteliales (ICBN) or Protostelea/Protostelia/Protosteliida (ICZN) is a grouping of slime molds from the phylum Mycetozoa. The name can vary depending upon the taxon used. Other names include Protostelea, Protostelia, and Protostelida. When not implying a specific level of classification, the term protostelid or protosteloid amoeba is sometimes used.

<span class="mw-page-title-main">Myxogastria</span> Group of slime molds

Myxogastria/Myxogastrea or Myxomycetes (ICN) is a class of slime molds that contains 5 orders, 14 families, 62 genera, and 888 species. They are colloquially known as the plasmodial or acellular slime moulds.

<span class="mw-page-title-main">Differentiation-inducing factor</span> Effector molecule that inhibits cell growth and promotes cellular differentiation

Differentiation-inducing factor (DIF) is one of a class of effector molecules that induce changes in cell chemistry, inhibiting growth and promoting differentiation of cell type. This name has been given to several factors before it was clear if they were the same or different effectors. DIFs have garnered interest with their potential tumor inhibiting properties. DIFs have also been used to help regulate plant growth.

<span class="mw-page-title-main">Trichiales</span> Order of slime moulds

Trichiales is an order of slime moulds in the phylum Amoebozoa. Trichiales is one of five orders in the group Myxomycetes, or the true plasmodial slime molds. It is also currently categorized under the superorder Lucisporidia with its sister group, Liceales. The order was first described by Thomas MacBride in 1922, and has retained the same name and status as a defined order in present phylogeny. In the plasmodium form, members of Trichiales lack a columella but have a well-developed capillitium for spore dispersal. The shape and details of the capillitium are used to define families within the order. Spores are brightly coloured, ranging from clear, white and yellow to pink and red-brown tones. The order currently has 4 families, 14 genera and 174 species. Recent molecular research has shown that while Trichiales probably represents a true taxonomic group, its sister group Liceales is likely paraphyletic, and it has been suggested that several genera from the Liceales should be reclassified under Trichiales instead.

Fonticula is a genus of cellular slime mold which forms a fruiting body in a volcano shape. As long ago as 1979 it has been known to not have a close relationship with either the Dictyosteliida or the Acrasidae, the two well-established groups of cellular slime molds. In 1979, Fonticula was made a new genus of its own due to the unique characteristics of its fruiting body, with only one species: Fonticula alba.

<i>Enteridium lycoperdon</i> Slime mold

Enteridium lycoperdon, the false puffball, is one of the more obvious species of slime mould or Myxogastria, typically seen in its reproductive phase as a white 'swelling' on standing dead trees in the spring, or on large pieces of fallen wood. Alder is a common host.

Polysphondylium pallidum is a species of cellular slime mould, a member of the phylum Mycetozoa.

<span class="mw-page-title-main">Hypothallus</span>

In true slime molds (myxogastria), lichens, and in species of the family Clavicipitaceae, the hypothallus is the layer on which the fruit body sits, lying in contact with the substrate. The word is derived from the Ancient Greek root hypó ("under") and thallós.

<span class="mw-page-title-main">Amoeba</span> Cellular body type

An amoeba, often called an amoeboid, is a type of cell or unicellular organism with the ability to alter its shape, primarily by extending and retracting pseudopods. Amoebae do not form a single taxonomic group; instead, they are found in every major lineage of eukaryotic organisms. Amoeboid cells occur not only among the protozoa, but also in fungi, algae, and animals.

<i>Hemitrichia</i> Genus of slime moulds

Hemitrichia is a genus of slime molds, of the family Trichiidae, found within the order Trichiida. It was first described by Josef Rostafinski in 1873 and remains a well-defined genus of the slime molds. Hemitrichia species exhibit either plasmodiocarp or sporangium fruiting bodies, both of which are well-known and recognizable slime molds seen on multiple continents. The genus includes Hemtrichia serpula, known as the pretzel slime mold, an iconic and widespread species that has been used to examine speciation in slime molds.

References

  1. 1 2 Alexopoulos, Constantine J.; Mims, Charles W.; Blackwell, Meredith M. (1996). Introductory Mycology (4th ed.). New York: John Wiley and Sons. p. 776. ISBN   978-0-471-52229-4.
  2. Panckow, Thomas (1654). Herbarium Portatile, Oder Behendes Kräuter und GewächsBuch. Berlin.
  3. de Bary, A. (1860). "XXV.—On the Mycetozoa". Annals and Magazine of Natural History. 5 (28): 233–243. doi:10.1080/00222936008697211. ISSN   0374-5481.
  4. 1 2 3 4 5 6 7 Olive, Lindsay S.; Stoianovitch, Carmen (technical assistance) (1975). The Mycetozoans. Academic Press. pp. 1–7. ISBN   978-0-1252-6250-7.
  5. Lister, Arthur; Lister, Gulielma (1911). A monograph of the Mycetozoa : a descriptive catalogue of the species in the Herbarium of the British Museum. London: Printed by order of the Trustees of the British Museum. doi:10.5962/bhl.title.21191.
  6. 1 2 3 Schnittler, M.; Mitchell, D. W. (2001) [2000]. "Species Diversity in Myxomycetes based on the morphological species concept – a critical examination". In Nowotny, Wolfgang; Aescht, Erna (eds.). Wolfsblut und Lohblüte – Lebensformen zwischen Tier und Pflanze[Wolves' Blood and Tan Blossom – Life forms between animals and plants]. Ausstellung im Biologiezentrum des OÖ. Landesmuseums. Vol. 73. OÖ Landes-Kultur. pp. 39–53. ISBN   978-3854740568.
  7. Martin, G. W. (1932). "Systematic Position of the Slime Molds and Its Bearing on the Classification of the Fungi". Botanical Gazette. 93 (4): 421–335. doi:10.1086/334272. JSTOR   2471449. S2CID   84506715.
  8. Martin, G. W. (1932). "The Systematic Position of the Myxomycetes". Mycologia. 93 (4): 119–129. doi:10.2307/3756254. JSTOR   3756254.
  9. Copeland, H. F. (1956). The Classification of Lower Organisms. Palo Alto, California: Pacific Books.
  10. Whittaker, R. H. (16 May 1969). "Response: Reassignment of Gymnomycota". Science. 164 (3881). American Association for the Advancement of Science (AAAS): 857. doi:10.1126/science.164.3881.857.b. ISSN   0036-8075. S2CID   239845755.
  11. Patterson, D. J.; Sogin, M. L. (1992). "Eukaryote origins and protistan diversity". The origin and evolution of prokaryotic and eukaryotic cells. New Jersey: World Scientific. pp. 13–46. ISBN   978-9-8102-1262-9.
  12. "Introduction to the 'Slime Molds'". University of California Museum of Paleontology.
  13. Vallverdú, Jordi; et al. (2018). "Slime mould: the fundamental mechanisms of biological cognition". BioSystems . 165 (165): 57–70. arXiv: 1712.00414 . Bibcode:2018BiSys.165...57V. doi:10.1016/j.biosystems.2017.12.011. PMID   29326068. S2CID   3909678.
  14. Baldauf, S.L.; Doolittle, W.F. (October 1997). "Origin and Evolution of the Slime Molds (Mycetozoa)". PNAS. 94 (22): 12007–120012. Bibcode:1997PNAS...9412007B. doi: 10.1073/pnas.94.22.12007 . PMC   23686 . PMID   9342353.
  15. 1 2 Stoyneva-Gärtner, Maya; Uzunov, Blagoy; Androv, Miroslav; Ivanov, Kristian; Gärtner, Georg (21 December 2022). "Potential of Slime Molds as a Novel Source for the Cosmetics Industry". Cosmetics. 10 (1). MDPI AG: 3. doi: 10.3390/cosmetics10010003 . ISSN   2079-9284.
  16. Adamatzky, Andrew (2016). Advances in Physarum Machines: Sensing and Computing with Slime Mould. Springer. p. 4. ISBN   978-3-319-26662-6.
  17. Ples, Marek (2023-11-11). "Lab Snapshots by Marek Ples; Microbiology - The biology on a different level". weirdscience.eu. Retrieved 2023-07-02.
  18. 1 2 3 Ing, B. (1999). The myxomycetes of Britain and Ireland: an identification handbook. Slough, England: Richmond Publishing. pp. 4, 9. ISBN   978-0-85546-251-2.
  19. Nannenga-Bremekamp, N.E. (1974). De Nederlandse Myxomyceten. Zuthpen: Koninklijke Nederlandse Natuurhistorische Vereniging. ISBN   978-90-03-93130-6.
  20. Zhulidov, Daniel A.; Robarts, Richard D.; Zhulidov, Alexander V.; Zhulidova, Olga V.; Markelov, Danila A.; Rusanov, Viktor A.; Headley, John V. (2002). "Zinc accumulation by the slime mold Fuligo septica (L.) Wiggers in the former Soviet Union and North Korea". Journal of Environmental Quality. 31 (3): 1038–1042. Bibcode:2002JEnvQ..31.1038Z. doi:10.2134/jeq2002.1038. PMID   12026071.
  21. 1 2 Stephenson, Steven L. (15 June 2000). Myxomycetes. Portland: Timber Press. p. 65. ISBN   978-0-88192-439-8.
  22. Krivomaz, Т. І.; Michaud, A.; Minter, D. W. (2012). "Metatrichia vesparium" (PDF).
  23. 1 2 Jacobson, R. (April 5, 2012). "Slime Molds: No Brains, No Feet, No Problem". PBS Newshour.
  24. Kin, K.; Schaap, P. (March 2021). "Evolution of Multicellular Complexity in The Dictyostelid Social Amoebas". Genes. 12 (4): 487. doi: 10.3390/genes12040487 . PMC   8067170 . PMID   33801615.
  25. Fiore-Donno, Anna Maria; Nikolaev, Sergey I.; Nelson, Michaela; Pawlowski, Jan; Cavalier-Smith, Thomas; Baldauf, Sandra L. (January 2010). "Deep Phylogeny and Evolution of Slime Moulds (Mycetozoa)". Protist. 161 (1): 55–70. doi:10.1016/j.protis.2009.05.002. PMID   19656720.
  26. "Species: Copromyxa arborescens M. Nesom & L. S. Olive". The Eumycetozoan Project Database. University of Arkansas . Retrieved June 26, 2010.
  27. 1 2 Brown, Matthew W.; Silberman, Jeffrey D.; Spiegel, Frederick W. (2011). "'Slime Molds' among the Tubulinea (Amoebozoa): Molecular Systematics and Taxonomy of Copromyxa". Protist. 162 (2): 277–287. doi:10.1016/j.protis.2010.09.003. ISSN   1434-4610. PMID   21112814.
  28. Brown, Matthew W.; Silberman, Jeffrey D.; Spiegel, Frederick W. (2012). "A contemporary evaluation of the acrasids (Acrasidae, Heterolobosea, Excavata)". European Journal of Protistology . 48 (2). Elsevier BV: 103–123. doi:10.1016/j.ejop.2011.10.001. ISSN   0932-4739. PMID   22154141.
  29. Neuhauser, Sigrid; Kirchmair, Martin; Bulman, Simon; Bass, David (2014). "Cross-kingdom host shifts of phytomyxid parasites". BMC Evolutionary Biology . 14 (1): 33. Bibcode:2014BMCEE..14...33N. doi: 10.1186/1471-2148-14-33 . PMC   4016497 . PMID   24559266.
  30. Tsui, Clement K. M.; Marshall, Wyth; Yokoyama, Rinka; Honda, Daiske; Lippmeier, J Casey; Craven, Kelly D.; Peterson, Paul D.; Berbee, Mary L. (January 2009). "Labyrinthulomycetes phylogeny and its implications for the evolutionary loss of chloroplasts and gain of ectoplasmic gliding". Molecular Phylogenetics and Evolution . 50 (1): 129–40. doi:10.1016/j.ympev.2008.09.027. PMID   18977305.
  31. Deasey, Mary C.; Olive, Lindsay S. (July 1981). "Role of Golgi Apparatus in Sorogenesis by the Cellular Slime Mold Fonticula alba". Science. 213 (4507): 561–563. Bibcode:1981Sci...213..561D. doi:10.1126/science.213.4507.561. PMID   17794844.
  32. Glimn-Lacy, Janice; Kaufman, Peter B. (2006). "Slime Molds". Botany Illustrated. Springer US. p. 45. doi:10.1007/0-387-28875-9_45. ISBN   978-0-387-28870-3.
  33. 1 2 Lindley, Lora A.; Stephenson, Steven L.; Spiegel, Frederick W. (1 July 2007). "Protostelids and myxomycetes isolated from aquatic habitats". Mycologia. 99 (4): 504–509. doi:10.3852/mycologia.99.4.504. PMID   18065001.
  34. 1 2 Hoppe, T.; Kutschera, U. (27 August 2022). "Phenotypic plasticity in plasmodial slime molds and molecular phylogeny of terrestrial vs. aquatic species". Theory in Biosciences. 141 (3). Springer: 313–319. doi:10.1007/s12064-022-00375-9. ISSN   1431-7613. PMC   9474427 . PMID   36029433.
  35. 1 2 Ameen, Fuad; Almansob, Abobakr; Al-Sabri, Ahmed (2020). "Records of slime molds (Myxomycetes) from deserts and other arid areas of Saudi Arabia". Sydowia (72). Verlag Ferdinand Berger & Söhne: 171–177. doi:10.12905/0380.sydowia72-2020-0171. ISSN   0082-0598.
  36. 1 2 Glime, J. M. (2019). "Slime Molds: Ecology and Habitats – Lesser Habitats". Bryophyte Ecology. Vol. 2. Bryological Interaction. Ebook sponsored by Michigan Technological University and the International Association of Bryologists.
  37. 1 2 Spiegel, Frederick W.; Steven L. Stephenson; Harold W. Keller; Donna L Moore; James C. Cavendar (2004). "Mycetozoans". In Gregory M. Mueller; Gerald F. Bills; Mercedes S. Foster (eds.). Biodiversity of fungi: inventory and monitoring methods . New York: Elsevier Academic Press. pp.  547–576. ISBN   0125095511.
  38. Zou, Yue; Hou, Jiangan; Guo, Songning; Li, Changtian; Li, Zhuang; Stephenson, Steven L.; Pavlov, Igor N.; Liu, Pu; Li, Yu (26 October 2022). "Diversity of Dictyostelid Cellular Slime Molds, Including Two Species New to Science, in Forest Soils of Changbai Mountain, China". Microbiology Spectrum. 10 (5). American Society for Microbiology: e0240222. doi:10.1128/spectrum.02402-22. ISSN   2165-0497. PMC   9620775 . PMID   36190423.
  39. Bonner, John Tyler (7 November 2015). "The Evolution of Evolution: Seen through the Eyes of a Slime Mold". BioScience. 65 (12). Oxford University Press: 1184–1187. doi: 10.1093/biosci/biv154 . ISSN   1525-3244.
  40. Li, Yan-Da; Tihelka, Erik; Liu, Zhen-Hua; Huang, Di-Ying; Cai, Chen-Yang (23 November 2021). "New mid-Cretaceous cryptic slime mold beetles and the early evolution of Sphindidae (Coleoptera: Cucujoidea)". Arthropod Systematics & Phylogeny. 79: 587–597. doi: 10.3897/asp.79.e72724 . ISSN   1864-8312.
  41. Ling, H. (2012). "Myxomycetes: Overlooked Native Plants". The Native Plant Society of New Jersey. Archived from the original on 9 June 2015. Retrieved 29 May 2018.
  42. Chimileski, Scott; Kolter, Roberto. "Life at the Edge of Sight". www.hup.harvard.edu. Harvard University Press. Archived from the original on October 19, 2023. Retrieved 2018-01-26.
  43. Alexopoulos, C.J. (1962). Introductory Mycology (Second ed.). New York, N.Y.: John Wiley and Sons. p. 78.
  44. Dee, Jennifer (1960). "A Mating-type System in an Acellular Slime-mould". Nature. 185 (4715): 780–781. Bibcode:1960Natur.185..780D. doi:10.1038/185780a0. S2CID   4206149.
  45. Moskvitch, Katia (9 July 2018). "Slime Molds Remember – but Do They Learn?". Quanta Magazine. Retrieved 2019-11-02.
  46. 1 2 Judson, Olivia (2002). Dr. Tatiana's Sex Advice To All Creation. New York: Henry Holt and Company. pp. 187–193. ISBN   978-0-8050-6332-5.
  47. Renner, B. (2006). "Slime Mold Reproduction". BioWeb. University of Wisconsin System. Archived from the original on November 2, 2019. Retrieved 2019-11-02.
  48. Cavender, James C.; Raper, Kenneth B. (March 1965). "The Acrasieae in Nature. Ii. Forest Soil as a Primary Habitat". American Journal of Botany. 52 (3): 297–302. doi:10.1002/j.1537-2197.1965.tb06789.x. ISSN   0002-9122.
  49. Bonner, J. T. (2009). The Social Amoebae: The Biology of Cellular Slime Molds. Princeton University Press. ISBN   978-0-691-13939-5. JSTOR   j.ctt7s6qz.
  50. Erdos, Gregory W.; Raper, Kenneth B.; Vogen, Linda K. (June 1973). "Mating Types and Macrocyst Formation in Dictyostelium discoideum". Proceedings of the National Academy of Sciences of the United States of America. 70 (6): 1828–1830. Bibcode:1973PNAS...70.1828E. doi: 10.1073/pnas.70.6.1828 . PMC   433606 . PMID   16592095.
  51. 1 2 Nestle, Marion; Sussman, Maurice (August 1972). "The effect of cyclic AMP on morphogernesis and enzyme accumulation in Dictyostelium discoideum". Developmental Biology. 28 (4): 545–554. doi:10.1016/0012-1606(72)90002-4. PMID   4340352.
  52. Levine, Herbert; Reynolds, William (May 1991). "Streaming instability of aggregating slime mold amoebae". Physical Review Letters. 66 (18): 2400–2403. Bibcode:1991PhRvL..66.2400L. doi:10.1103/PhysRevLett.66.2400. PMID   10043475.
  53. Tyson, John J.; Alexander, Kevin A.; Manoranjan, V. S.; Murray, J.D. (1989-01-01). "Spiral waves of cyclic amp in a model of slime mold aggregation". Physica D: Nonlinear Phenomena. 34 (1): 193–207. Bibcode:1989PhyD...34..193T. doi:10.1016/0167-2789(89)90234-0. ISSN   0167-2789.
  54. Roos, W.; Nanjundiah, V.; Malchow, D.; Gerisch, G. (May 1975). "Amplification of cyclic-AMP signals in aggregating cells of Dictyostelium discoideum". FEBS Letters. 53 (2): 139–142. doi:10.1016/0014-5793(75)80005-6. PMID   166875. S2CID   29448450.
  55. Fujimori, Taihei; Nakajima, Akihiko; Shimada, Nao; Sawai, Satoshi (March 2019). "Tissue self-organization based on collective cell migration by contact activation of locomotion and chemotaxis". Proceedings of the National Academy of Sciences of the United States of America. 116 (10): 4291–4296. Bibcode:2019PNAS..116.4291F. doi: 10.1073/pnas.1815063116 . PMC   6410881 . PMID   30782791.
  56. Bonner, John Tyler (1983). "Chemical Signals of Social Amoebae". Scientific American . 248 (4): 114–121. Bibcode:1983SciAm.248d.114B. doi:10.1038/scientificamerican0483-114. ISSN   0036-8733. JSTOR   24968880.
  57. Sheikh, Sanea; Fu, Chengjie; Brown, Matthew; Baldauf, Sandra (1 March 2023), Deep origins of eukaryotic multicellularity revealed by the Acrasis kona genome and developmental transcriptomes, doi:10.21203/rs.3.rs-2587723/v1
  58. Gilbert, H. C.; Martin, G. W. (1933). "Myxomycetes found on the bark of living trees". University of Iowa Studies in Natural History. 15: 3–8.
  59. 1 2 3 4 Keller, Harold W.; Everhart, Sydney (2010). "Importance of Myxomycetes in Biological Research and Teaching". Fungi. 3 (1 (Winter 2010)).
  60. Steglich, W. (1 January 1989). "Slime moulds (Myxomycetes) as a source of new biologically active metabolites". Pure and Applied Chemistry. 61 (3). Walter de Gruyter GmbH: 281–288. doi: 10.1351/pac198961030281 . ISSN   1365-3075. S2CID   53663356.
  61. Dembitsky, Valery M.; Řezanka, Tomáš; Spížek, Jaroslav; Hanuš, Lumír O. (2005). "Secondary metabolites of slime molds (myxomycetes)". Phytochemistry. 66 (7). Elsevier BV: 747–769. Bibcode:2005PChem..66..747D. doi:10.1016/j.phytochem.2005.02.017. ISSN   0031-9422. PMID   15797602.
  62. Lierl, Michelle B. (2013). "Myxomycete (slime mold) spores: unrecognized aeroallergens?". Annals of Allergy, Asthma & Immunology. 111 (6). Elsevier BV: 537–541.e2. doi:10.1016/j.anai.2013.08.007. ISSN   1081-1206. PMID   24267365.
  63. Carr, William E. S. (1989). "Chemical Signaling Systems in Lower Organisms: A Prelude to the Evolution of Chemical Communication in the Nervous System". In Anderson, Peter A.V. (ed.). Evolution of the First Nervous Systems. Boston, MA: Springer. pp. 81–94. doi:10.1007/978-1-4899-0921-3_6. ISBN   978-1-4899-0921-3.
  64. Carr, William E. S.; Gleeson, Richard A.; Trapido-Rosenthal, Henry G. (June 1990). "The role of perireceptor events in chemosensory processes". Trends in Neurosciences. 13 (6): 212–215. doi:10.1016/0166-2236(90)90162-4. PMID   1694326. S2CID   46452914.
  65. Lindsey, J.; Lasker, R. (1974). "Chemical Signals in the Sea: Marine Allelochemics and Evolution". Fishery Bulletin. 72 (1): 1–11.
  66. Lenhoff, H M; Heagy, W (April 1977). "Aquatic invertebrates: model systems for study of receptor activation and evolution of receptor proteins". Annual Review of Pharmacology and Toxicology. 17 (1): 243–258. doi:10.1146/annurev.pa.17.040177.001331. PMID   17353.
  67. Janssens, P.M.; Van Haastert, P.J. (December 1987). "Molecular basis of transmembrane signal transduction in Dictyostelium discoideum". Microbiological Reviews. 51 (4): 396–418. doi:10.1128/mr.51.4.396-418.1987. PMC   373123 . PMID   2893972.
  68. Saigusa, Tetsu; Tero, Atsushi; Nakagaki, Toshiyuki; Kuramoto, Yoshiki (January 2008). "Amoebae anticipate periodic events". Physical Review Letters. 100 (1): 018101. Bibcode:2008PhRvL.100a8101S. doi:10.1103/PhysRevLett.100.018101. hdl: 2115/33004 . PMID   18232821. S2CID   14710241.
  69. MacPherson, Kitta (January 21, 2010). "The 'sultan of slime': Biologist continues to be fascinated by organisms after nearly 70 years of study". Princeton University.
  70. Zheng, Rong; Jia, Heming; Aualigah, Laith; Liu, Qingxin; Wang, Shuang (2021). "Deep ensemble of slime mold algorithm and arithmetic optimization algorithm for global optimization". Processes. 9 (10): 1774. doi: 10.3390/pr9101774 .
  71. Nakagaki, Toshiyuki; Yamada, Hiroyasu; Toth, Agotha (September 28, 2000). "Maze-solving by an amoeboid organism". Nature. 407 (6803): 470. doi:10.1038/35035159. PMID   11028990.
  72. 1 2 Tero, A.; Takagi, S.; Saigusa, T.; et al. (January 2010). "Rules for biologically inspired adaptive network design" (PDF). Science. 327 (5964): 439–442. Bibcode:2010Sci...327..439T. doi:10.1126/science.1177894. PMID   20093467. S2CID   5001773. Archived from the original (PDF) on 2013-04-21.
  73. Christiansen B (25 January 2010). "Slime Mold Network Engineering". Technovelgy.
  74. Marks, P. (6 January 2010). "Designing highways the slime mould way". New Scientist.
  75. Adamatzky, Andrew; Akl, S.; Alonso-Sanz, R.; et al. (2013). "Are motorways rational from slime mould's point of view?". International Journal of Parallel, Emergent and Distributed Systems. 28 (3): 230–248. arXiv: 1203.2851 . doi:10.1080/17445760.2012.685884. S2CID   15534238.
  76. Parr, D. (18 February 2014). "Cities in motion: how slime mould can redraw our rail and road maps". The Guardian .
  77. "Slime Mold Simulations Used to Map Dark Matter". NASA. 10 March 2020.
  78. Wenz, J. (12 March 2020). "Slime mold helps astronomers map dark matter". Astronomy magazine.
  79. 1 2 Requejo, Oscar; Andres-Rodriguez, N. Floro (2019). "Consideraciones Etnobiologicas sobre los Mixomicetos" [Ethnobiological Considerations on Myxomycetes]. Bol. Soc. Micol. Madrid (in Spanish). 43: 25–37.