Inconel 625

Last updated

Inconel 625
Cladding-Auftragschweissung in einem Rohr mit Inconel 625.jpg
Cladding overlay in a tube with Inconel 625
SynonymWerkstoff 2.4856
Material type Alloy
Alloy properties
UNS identifier N06625
Alloy typeNickel-based superalloy
Composition
  • Ni 58%
  • Cr 20-23%
  • Mo 8-10%
  • Fe 5%
  • Nb + Ta 3.15-4.15%
  • Co 1%
  • Mn 0.5%
  • Si 0.5%
  • Al 0.4%
  • Ti 0.4%
  • C 0.1%
  • P 0.015%
  • S 0.015%
Physical properties
Density (ρ)8.4 g/cm3
Mechanical properties
Young's modulus (E)207.5-147.5 @ 70–1,600 °F (21–871 °C) (annealed)
204.8-148.2 @ 70–1,600 °F (21–871 °C) (solution treated)
Tensile strength (σt)Rod, bar, plate: 120–160 ksi (827–1,103 MPa) (as rolled), 120–150 ksi (827–1,034 MPa) (annealed)
Elongation (ε)at break Rod, bar, plate: 60-30% (as rolled and annealed)
Poisson's ratio (ν)0.278-0.336 @ 70–1,600 °F (21–871 °C) (annealed)
0.312-0.289 @ 70–1,600 °F (21–871 °C) (solution treated)
HardnessBrinell Rod, bar, plate: 175-240 (as rolled)
Thermal properties
Melting temperature (Tm)2,350–2,460 °F (1,288–1,349 °C)
Thermal conductivity (k)50 BTU/(hr·ft⋅°F) @ −250 °F (−157 °C) – 175 BTU/(hr·ft⋅°F) @ 1,800 °F (982 °C)
Specific heat capacity (c)0.096-0.160 BTU/(lb⋅°F)
(0.402-0.669 J/g⋅°C)
@ 0–2,000 °F (−18–1,093 °C)
Electrical properties
Permeability (μ)1.006 @ 200 Oe (15.92 kA/m)
Values displayed for tensile strength, elongation, and hardness are shown for various products under 4 in (10.2 cm) in size, and are measured at room temperature.

Inconel Alloy 625 (UNS designation N06625) is a nickel-based superalloy that possesses high strength properties and resistance to elevated temperatures. It also demonstrates remarkable protection against corrosion and oxidation. Its ability to withstand high stress and a wide range of temperatures, both in and out of water, as well as being able to resist corrosion while being exposed to highly acidic environments makes it a fitting choice for nuclear and marine applications. [1] [2] [3]

Contents

Inconel 625 was developed in the 1960s with the purpose of creating a material that could be used for steam-line piping. Some modifications were made to its original composition that have enabled it to be even more creep-resistant and weldable. Because of this, the uses of Inconel 625 have expanded into a wide range of industries such as the chemical processing industry, and for marine and nuclear applications to make pumps and valves and other high pressure equipment. [4] [1]

Because of the metal's high Niobium (Nb) levels as well as its exposure to harsh environments and high temperatures, there was concern about the weldability of Inconel 625. Studies were therefore conducted to test the metal's weldability, tensile strength and creep resistance, and Inconel 625 was found to be an ideal choice for welding. [3] Other well known names for Inconel 625 are Haynes 625, Nickelvac 625, Nicrofer 6020, Altemp 625 and Chronic 625

Chemistry

Inconel 625 was designed as a solid solution strengthened material with no significant microstructure. This holds true at low and high temperatures, but there is a region (923 to 1148 K) where precipitates form that are detrimental to the creep properties, and thus the strength, of the alloy. Under any creep conditions (high temperature with an applied stress), M23C6-type carbides form at the grain boundaries. When tested at 973 K, γ” precipitates begin forming. These γ” phase precipitates are ordered A3 B type with a composition of Ni3(Nb, Al, Ti) and a tetragonal crystal structure. They form a disk-shaped morphology and are coherent with respect to the matrix. When tested at 998 K, a δ-phase precipitate begins forming which consist of Ni3(Nb, Mo) in an orthorhombic crystal structure. They form in a needle-like morphology and are incoherent with the matrix. Both of these precipitates can be completely dissolved back into the matrix when the sample is heated to 1148 K for 5 hours. This leads to the ability to recover creep properties of the alloy to prolong the materials lifetime. [5]

ASTM Specifications

ASTM (American Society for Testing and Materials) for various products made out of Inconel 625 are as follow:

Pipe SeamlessPipe WeldedTube SeamlessTube WeldedSheet/PlateBarForgingFittingWire
B444 [6] B705 [7] B444 [6] B704 [8] B443 [9] B446 [10]

Markets

Markets for Inconel 625 include:

Applications

Product and technology applications of Inconel 625 include [11] :

Specifications

Specifications and certifications include: [12]


See also

Related Research Articles

<span class="mw-page-title-main">Stainless steel</span> Steel alloy resistant to corrosion

Stainless steel, also known as inox, corrosion-resistant steel (CRES), and rustless steel, is an alloy of iron that is resistant to rusting and corrosion. It contains iron with chromium and other elements such as molybdenum, carbon, nickel and nitrogen depending on its specific use and cost. Stainless steel's resistance to corrosion results from the 10.5%, or more, chromium content which forms a passive film that can protect the material and self-heal in the presence of oxygen.

<span class="mw-page-title-main">High-strength low-alloy steel</span> Type of alloy steel

High-strength low-alloy steel (HSLA) is a type of alloy steel that provides better mechanical properties or greater resistance to corrosion than carbon steel. HSLA steels vary from other steels in that they are not made to meet a specific chemical composition but rather specific mechanical properties. They have a carbon content between 0.05 and 0.25% to retain formability and weldability. Other alloying elements include up to 2.0% manganese and small quantities of copper, nickel, niobium, nitrogen, vanadium, chromium, molybdenum, titanium, calcium, rare-earth elements, or zirconium. Copper, titanium, vanadium, and niobium are added for strengthening purposes. These elements are intended to alter the microstructure of carbon steels, which is usually a ferrite-pearlite aggregate, to produce a very fine dispersion of alloy carbides in an almost pure ferrite matrix. This eliminates the toughness-reducing effect of a pearlitic volume fraction yet maintains and increases the material's strength by refining the grain size, which in the case of ferrite increases yield strength by 50% for every halving of the mean grain diameter. Precipitation strengthening plays a minor role, too. Their yield strengths can be anywhere between 250–590 megapascals (36,000–86,000 psi). Because of their higher strength and toughness HSLA steels usually require 25 to 30% more power to form, as compared to carbon steels.

Nichrome is a family of alloys of nickel and chromium commonly used as resistance wire, heating elements in devices like toasters, electrical kettles and space heaters, in some dental restorations (fillings) and in a few other applications.

Refractory metals are a class of metals that are extraordinarily resistant to heat and wear. The expression is mostly used in the context of materials science, metallurgy and engineering. The definition of which elements belong to this group differs. The most common definition includes five elements: two of the fifth period and three of the sixth period. They all share some properties, including a melting point above 2000 °C and high hardness at room temperature. They are chemically inert and have a relatively high density. Their high melting points make powder metallurgy the method of choice for fabricating components from these metals. Some of their applications include tools to work metals at high temperatures, wire filaments, casting molds, and chemical reaction vessels in corrosive environments. Partly due to the high melting point, refractory metals are stable against creep deformation to very high temperatures.

In modern Western body piercing, a wide variety of materials are used. Some cannot be autoclaved, and others may induce allergic reactions, or harbour bacteria. Certain countries, such as those belonging to the EU, have legal regulations specifying which materials can be used in new piercings.

<span class="mw-page-title-main">Inconel</span> Austenitic nickel-chromium superalloys

Inconel is a nickel-chromium-based superalloy often utilized in extreme environments where components are subjected to high temperature, pressure or mechanical loads. Inconel alloys are oxidation- and corrosion-resistant. When heated, Inconel forms a thick, stable, passivating oxide layer protecting the surface from further attack. Inconel retains strength over a wide temperature range, attractive for high-temperature applications where aluminum and steel would succumb to creep as a result of thermally-induced crystal vacancies. Inconel's high-temperature strength is developed by solid solution strengthening or precipitation hardening, depending on the alloy.

AL-6XN is a type of weldable stainless steel that consist of an alloy of nickel (24%), chromium (22%) and molybdenum (6.3%) with other trace elements such as nitrogen.

<span class="mw-page-title-main">Titanium alloys</span> Metal alloys made by combining titanium with other elements

Titanium alloys are alloys that contain a mixture of titanium and other chemical elements. Such alloys have very high tensile strength and toughness. They are light in weight, have extraordinary corrosion resistance and the ability to withstand extreme temperatures. However, the high cost of processing limits their use to military applications, aircraft, spacecraft, bicycles, medical devices, jewelry, highly stressed components such as connecting rods on expensive sports cars and some premium sports equipment and consumer electronics.

<span class="mw-page-title-main">Superalloy</span> Alloy with higher durability than normal metals

A superalloy, or high-performance alloy, is an alloy with the ability to operate at a high fraction of its melting point. Key characteristics of a superalloy include mechanical strength, thermal creep deformation resistance, surface stability, and corrosion and oxidation resistance.

Alloy 20 is an austenitic stainless steel containing less than 50% iron developed for applications involving sulfuric acid. Its corrosion resistance also finds other uses in the chemical, petrochemical, power generation, and plastics industries. Alloy 20 resists pitting and chloride ion corrosion, better than 304 stainless steel and on par with 316L stainless steel. Its copper content protects it from sulfuric acid. Alloy 20 is often chosen to solve stress corrosion cracking problems, which may occur with 316L stainless. Alloy of the same name with the designation "Cb-3" indicates niobium stabilized.

<span class="mw-page-title-main">Intergranular corrosion</span> When crystallite boundaries are more corrosive than their interiors

In materials science, intergranular corrosion (IGC), also known as intergranular attack (IGA), is a form of corrosion where the boundaries of crystallites of the material are more susceptible to corrosion than their insides.

<span class="mw-page-title-main">Austenitic stainless steel</span> One of the 5 crystalline structures of stainless steel

Austenitic stainless steel is one of the five classes of stainless steel by crystalline structure. Its primary crystalline structure is austenite and it prevents steels from being hardenable by heat treatment and makes them essentially non-magnetic. This structure is achieved by adding enough austenite-stabilizing elements such as nickel, manganese and nitrogen. The Incoloy family of alloys belong to the category of super austenitic stainless steels.

<span class="mw-page-title-main">SAE steel grades</span> Standard alloy numbering system for steel grades

The SAE steel grades system is a standard alloy numbering system for steel grades maintained by SAE International.

<span class="mw-page-title-main">Alloy steel</span> Steel alloyed with a variety of elements

Alloy steel is steel that is alloyed with a variety of elements in amounts between 1.0% and 50% by weight, typically to improve its mechanical properties.

In metallurgy, solid solution strengthening is a type of alloying that can be used to improve the strength of a pure metal. The technique works by adding atoms of one element to the crystalline lattice of another element, forming a solid solution. The local nonuniformity in the lattice due to the alloying element makes plastic deformation more difficult by impeding dislocation motion through stress fields. In contrast, alloying beyond the solubility limit can form a second phase, leading to strengthening via other mechanisms.

Nickel aluminide refers to either of two widely used intermetallic compounds, Ni3Al or NiAl, but the term is sometimes used to refer to any nickel–aluminium alloy. These alloys are widely used because of their high strength even at high temperature, low density, corrosion resistance, and ease of production. Ni3Al is of specific interest as a precipitate in nickel-based superalloys, where it is called the γ' (gamma prime) phase. It gives these alloys high strength and creep resistance up to 0.7–0.8 of its melting temperature. Meanwhile, NiAl displays excellent properties such as lower density and higher melting temperature than those of Ni3Al, and good thermal conductivity and oxidation resistance. These properties make it attractive for special high-temperature applications like coatings on blades in gas turbines and jet engines. However, both these alloys have the disadvantage of being quite brittle at room temperature, with Ni3Al remaining brittle at high temperatures as well. To address this problem, has been shown that Ni3Al can be made ductile when manufactured in single-crystal form rather than in polycrystalline form.

Electron-beam additive manufacturing, or electron-beam melting (EBM) is a type of additive manufacturing, or 3D printing, for metal parts. The raw material is placed under a vacuum and fused together from heating by an electron beam. This technique is distinct from selective laser sintering as the raw material fuses have completely melted. Selective Electron Beam Melting (SEBM) emerged as a powder bed-based additive manufacturing (AM) technology and was brought to market in 1997 by Arcam AB Corporation headquartered in Sweden.

Incoloy refers to a range of superalloys now produced by the Special Metals Corporation (SMC) group of companies and created with a trademark by the Inco company in 1952. Originally Inco protected these alloys by patent. In 2000, the SMC published a 61-page document entitled "High-Performance Alloys for Resistance to Aqueous Corrosion" highlighting Incoloy, as well as Monel and Inconel products, and their use in fluid environments such as sulfuric acid, hydrochloric acid, hydrofluoric acid, phosphoric acid, nitric acid, other acids as well as freshwater environments.

Havar, or UNS R30004, is an alloy of cobalt, possessing a very high mechanical strength. It can be heat-treated. It is highly resistant to corrosion and is non-magnetic. It is biocompatible. It has high fatigue resistance. It is a precipitation hardening superalloy.

References

  1. 1 2 "Special Metals INCONEL® Alloy 625". ASM Aerospace Specification Metals Inc.
  2. "High Temp Super Alloys". ASM Aerospace Specification Metals Inc.
  3. 1 2 Eiselstein, H.L.; Tillack, D.J. (1991). "The Invention and Definition of Alloy 625". Superalloys 718, 625 and Various Derivatives (1991). TMS The Minerals, Metals and Materials Society. pp. 1–14. doi:10.7449/1991/Superalloys_1991_1_14. ISBN   0-87339-173-X.
  4. Smith, G.D.; Tillack, D.J.; Patel, S.J. (2001). "Alloy 625 – Impressive Past/Significant Presence/Awesome Future". Superalloys 718, 625, 706 and Various Derivatives. TMS The Minerals, Metals and Materials Society. pp. 35–46. doi:10.7449/2001/Superalloys_2001_35_46. ISBN   0-87339-510-7.
  5. Mathew, M. D. (2008). "Microstructural changes in alloy 625 during high temperature creep". Materials Characterization. 59 (5): 508–513. doi:10.1016/j.matchar.2007.03.007.
  6. 1 2 "Standard Specification for Nickel-Chromium-Molybdenum-Niobium Alloys and Nickel-Chromium-Molybdenum-Silicon Alloy Pipe and Tube". www.astm.org. doi:10.1520/b0444-23 . Retrieved 2024-10-17.
  7. "Standard Specification for Nickel-Chromium-Molybdenum-Niobium Alloy, Nickel-Chromium-Molybdenum-Silicon Alloy, and Nickel-Iron-Chromium-Molybdenum-Copper Alloy Welded Pipe". www.astm.org. doi:10.1520/b0705-24 . Retrieved 2024-10-17.
  8. "Standard Specification for Welded Nickel Alloy Tubes". www.astm.org. doi:10.1520/b0704-23 . Retrieved 2024-10-17.
  9. "Standard Specification for Nickel-Chromium-Molybdenum-Columbium Alloy and Nickel-Chromium-Molybdenum-Silicon Alloy Plate, Sheet, and Strip". www.astm.org. doi:10.1520/b0443-19 . Retrieved 2024-10-17.
  10. "Standard Specification for Nickel-Chromium-Molybdenum-Niobium Alloy, Nickel-Chromium-Molybdenum-Silicon Alloy, and Nickel-Chromium-Molybdenum-Tungsten Alloy Rod and Bar". www.astm.org. doi:10.1520/b0446-23 . Retrieved 2024-10-17.
  11. Newman, Ian. "5 applications of INCONEL alloys". www.corrotherm.co.uk. Retrieved 2024-11-13.
  12. "Inconel nickel-chromium alloy 625 (UNS N06625/W.Nr. 2.4856)" (PDF). www.specialmetals.com. August 13, 2013. Retrieved November 17, 2024.