Unified numbering system

Last updated

The unified numbering system (UNS) is an alloy designation system widely accepted in North America. Each UNS number relates to a specific metal or alloy and defines its specific chemical composition, or in some cases a specific mechanical or physical property. A UNS number alone does not constitute a full material specification because it establishes no requirements for material properties, heat treatment, form, or quality.

Contents

History

During the early 20th century many different metal alloys were developed in isolation within certain industries to meet the needs of that industry. This allowed a wide variety of competing standards, compositions and designations to flourish. By the 1960s there were a number of differing numbering or designation schemes for various alloys. This meant that the same number might be used for different alloys, different numbers might be used for the same alloy or different trade names might indicate similar or wildly different alloys. Additionally, the increasing number of new alloys meant that the problem would only get worse. [1]

In January 1971, an 18-month study recommended that a unified system would be possible and helpful. An advisory board was established in April 1972 to establish the Unified Numbering System (UNS). [2] The UNS is managed jointly by the ASTM International and SAE International. The resulting document SAE HS-1086 provides a cross-reference between various designation systems and the chemical composition.

UNS number vs material specification

A UNS number only defines a specific chemical composition, it does not provided full material specification. Requirements such as material properties (yield strength, ultimate strength, hardness, etc.), heat treatment, form (rolled, cast, forged, flanges, tubes, bars, etc.), purpose (high temperature, boilers and pressure vessels, etc.) and testing methods are all specified in the material or standard specification which is created by various trade and professional organizations. Many material or standard specifications include a number of different UNS numbers that may be used within that specification.

For example: UNS S30400 (SAE 304, Cr/Ni 18/10, Euronorm 1.4301 stainless steel) could be used to make stainless steel bars (ASTM A276) or stainless steel plates for pressure vessels (ASTM A240) or pipes (ASTM A312). Conversely, A312 pipes could be made out of about 70 different UNS alloy steels.

Format

It consists of a prefix letter and five digits designating a material composition. For example, a prefix of S indicates stainless steel alloys, C indicates copper, brass, or bronze alloys, T indicates tool steels, and so on. The first 3 digits often match older 3-digit numbering systems, while the last 2 digits indicate more modern variations.

For example, Stainless Steel Type 310 in the original 3-digit system became S31000 in the UNS System. The more modern low-carbon variation, Type 310S, became S31008 in the UNS System. Often, the suffix digit is chosen to represent a material property specification. For example, "08" was assigned to UNS S31008 because the maximum allowed carbon content is 0.08%.

UNS categories [3]
UNS seriesMetal type(s)
A00001 to A99999Aluminum and aluminum alloys
C00001 to C99999Copper and copper alloys (brasses and bronzes)
D00001 to D99999Specified mechanical property steels
E00001 to E99999Rare earth and rare earthlike metals and alloys
F00001 to F99999Cast irons
G00001 to G99999AISI and SAE carbon and alloy steels (except tool steels)
H00001 to H99999AISI and SAE H-steels
J00001 to J99999Cast steels (except tool steels)
K00001 to K99999Miscellaneous steels and ferrous alloys
L00001 to L99999Low-melting metals and alloys
M00001 to M99999Miscellaneous nonferrous metals and alloys
eg [4]
M1xxxx - Magnesium Alloys
N00001 to N99999Nickel and nickel alloys
P00001 to P99999Precious metals and alloys
R00001 to R99999Refractory metals and alloys
eg [4]
R03xxx- Molybdenum Alloys
R04xxx- Niobium (Columbium) Alloys
R05xxx- Tantalum Alloys
R3xxxx- Cobalt Alloys
R5xxxx- Titanium Alloys
R6xxxx- Zirconium Alloys
S00001 to S99999Heat and corrosion resistant (stainless) steels
T00001 to T99999Tool steels, wrought and cast
W00001 to W99999Welding filler metals
Z00001 to Z99999Zinc and zinc alloys

Example materials

Some common materials and translations to other standards: [5]

Chinese variant

A UNS-derived system known as ISC (in Chinese 统一数字代号, literally "unified numeric designator") is used in China in parallel to the composition-based nomenclature. [6] Individual grades may receive the same number (e.g. S31603), a slightly different number (e.g. S30400/S30408, S17400/S17440), or a totally different one (e.g. S20200/S35450, S41026 [7] /S45710). [5]

See also

Related Research Articles

<span class="mw-page-title-main">Stainless steel</span> Steel alloy resistant to corrosion

Stainless steel is an alloy of iron that is resistant to rusting and corrosion. It contains at least 11% chromium and may contain elements such as carbon, other nonmetals and metals to obtain other desired properties. Stainless steel's resistance to corrosion results from the chromium, which forms a passive film that can protect the material and self-heal in the presence of oxygen.

<span class="mw-page-title-main">American Iron and Steel Institute</span> US trade association

The American Iron and Steel Institute is an association of North American steel producers. With its predecessor organizations, is one of the oldest trade associations in the United States, dating back to 1855. It assumed its present form in 1908, with Judge Elbert H. Gary, chairman of the United States Steel Corporation, as its first president. Its development was in response to the need for a cooperative agency in the iron and steel industry for collecting and disseminating statistics and information, carrying on investigations, providing a forum for the discussion of problems and generally advancing the interests of the industry.

<span class="mw-page-title-main">Rebar</span> Steel reinforcement

Rebar, known when massed as reinforcing steel or reinforcement steel, is a steel bar used as a tension device in reinforced concrete and reinforced masonry structures to strengthen and aid the concrete under tension. Concrete is strong under compression, but has low tensile strength. Rebar significantly increases the tensile strength of the structure. Rebar's surface features a continuous series of ribs, lugs or indentations to promote a better bond with the concrete and reduce the risk of slippage.

Surgical stainless steel is a grade of stainless steel used in biomedical applications. The most common "surgical steels" are austenitic SAE 316 stainless and martensitic SAE 440, SAE 420, and 17-4 stainless steels. There is no formal definition on what constitutes a "surgical stainless steel", so product manufacturers and distributors often apply the term to refer to any grade of corrosion resistant steel.

<span class="mw-page-title-main">Monel</span> Solid-solution binary alloy of nickel and copper

Monel is a group of alloys of nickel and copper, with small amounts of iron, manganese, carbon, and silicon. Monel is not a cupronickel alloy because it has less than 60% copper.

In modern Western body piercing, a wide variety of materials are used. Some cannot be autoclaved, and others may induce allergic reactions, or harbour bacteria. Certain countries, such as those belonging to the EU, have legal regulations specifying which materials can be used in new piercings.

Alloy 20 is an austenitic stainless steel containing less than 50% iron developed for applications involving sulfuric acid. Its corrosion resistance also finds other uses in the chemical, petrochemical, power generation, and plastics industries. Alloy 20 resists pitting and chloride ion corrosion, better than 304 stainless steel and on par with 316L stainless steel. Its copper content protects it from sulfuric acid. Alloy 20 is often chosen to solve stress corrosion cracking problems, which may occur with 316L stainless. Alloy of the same name with the designation "Cb-3" indicates niobium stabilized.

Marine grade stainless alloys typically contain molybdenum to resist the corrosive effects of NaCl or salt in seawater. Concentrations of salt in seawater can vary, and splash zones can cause concentrations to increase dramatically from the spray and evaporation.

<span class="mw-page-title-main">SAE steel grades</span> Standard alloy numbering system for steel grades

The SAE steel grades system is a standard alloy numbering system for steel grades maintained by SAE International.

<span class="mw-page-title-main">Aluminium alloy</span> Alloy in which aluminium is the predominant metal

An aluminium alloy is an alloy in which aluminium (Al) is the predominant metal. The typical alloying elements are copper, magnesium, manganese, silicon, tin, nickel and zinc. There are two principal classifications, namely casting alloys and wrought alloys, both of which are further subdivided into the categories heat-treatable and non-heat-treatable. About 85% of aluminium is used for wrought products, for example rolled plate, foils and extrusions. Cast aluminium alloys yield cost-effective products due to the low melting point, although they generally have lower tensile strengths than wrought alloys. The most important cast aluminium alloy system is Al–Si, where the high levels of silicon (4–13%) contribute to give good casting characteristics. Aluminium alloys are widely used in engineering structures and components where light weight or corrosion resistance is required.

Steel grades to classify various steels by their composition and physical properties have been developed by a number of standards organizations.

6061 is a precipitation-hardened aluminium alloy, containing magnesium and silicon as its major alloying elements. Originally called "Alloy 61S", it was developed in 1935. It has good mechanical properties, exhibits good weldability, and is very commonly extruded. It is one of the most common alloys of aluminium for general-purpose use.

ASTM A325 is an ASTM International standard for heavy hex structural bolts, titled Standard Specification for Structural Bolts, Steel, Heat Treated, 120/105 ksi Minimum Tensile Strength. It defines mechanical properties for bolts that range from 12 to 1+12 inches in diameter.

ASTM A490 and ASTM A490M are ASTM International standards for heavy hex structural bolts made from alloy steel. The imperial standard is officially titled Standard Specification for Structural Bolts, Alloy Steel, Heat Treated, 150 ksi Minimum Tensile Strength, while the metric standard (M) is titled Standard Specification for High-Strength Steel Bolts, Classes 10.9 and 10.9.3, for Structural Steel Joints.

<span class="mw-page-title-main">Tube (fluid conveyance)</span>

A tube, or tubing, is a long hollow cylinder used for moving fluids or to protect electrical or optical cables and wires.

Zeron 100 is a super duplex stainless steel developed by Rolled Alloys. The alloy has excellent corrosion resistance combined with high strength. It typically contains 25% chromium and 7% nickel and 3.6% molybdenum along with copper and tungsten additions. Zeron 100 has a 50–50 austenitic–ferritic structure. It also has greater resistance to chloride pitting, crevice corrosion and stress corrosion cracking than exhibited by the standard 300 series stainless steels.

Ti-6Al-4V, also sometimes called TC4, Ti64, or ASTM Grade 5, is an alpha-beta titanium alloy with a high specific strength and excellent corrosion resistance. It is one of the most commonly used titanium alloys and is applied in a wide range of applications where low density and excellent corrosion resistance are necessary such as e.g. aerospace industry and biomechanical applications.

440C is a martensitic 400 series stainless steel, and has the highest carbon content of the 400 stainless steel series. It can be heat treated to reach hardness of 58 to 60 HRC. It can be used to make rolling contact stainless bearings, e.g. ball bearings and roller bearings. It is also used to make knife blades.

<span class="mw-page-title-main">SAE 304 stainless steel</span> Most common stainless steel

SAE 304 stainless steel is the most common stainless steel. The steel contains both chromium and nickel metals as the main non-iron constituents. It is an austenitic stainless steel. It is less electrically and thermally conductive than carbon steel. It is magnetic, but less magnetic than steel. It has a higher corrosion resistance than regular steel and is widely used because of the ease in which it is formed into various shapes.

5456 aluminium–magnesium alloy is an alloy in the wrought aluminium-magnesium family. While it is closely related to 5356 aluminium alloy, it is used in structural applications, like most other aluminium-magnesium alloys, and not as filler for welding. As a wrought alloy, it can be formed by rolling, extrusion, and forging, but not casting. It can be cold worked to produce tempers with a higher strength but a lower ductility. It is susceptible to exfoliation corrosion when held at temperatures above 65 °C (150 °F) for extended periods of time.

References

  1. Cobb, Harold M. (September 2007). "The Naming and Numbering of Stainless Steels". Advanced Materials & Processes. ASM International. 165 (9).
  2. "Unified Numbering System (UNS) for Metals and Alloys". AZoM.com. 2012-06-29. Retrieved 2020-01-06.
  3. Oberg, Erik; et al. (2004). Machinery's Handbook (27th ed.). Industrial Press Inc. p. 440. ISBN   0-8311-2700-7.
  4. 1 2 Overview of the UNS system
  5. 1 2 "Stainless steel grades listed in the international standard ISO 15510:2010 Comparative designations of grades with similar composition from other important standards. (listed by type of steel structure and by increasing intermediate 3-digits code of the ISO name)" (PDF). International Stainless Steel Forum. Retrieved 10 March 2023.
  6. "GB/T 17616-2013 Unified numbering system for designation of iron,steel and alloy". openstd.samr.gov.cn.
  7. ASTM A182/A182M − 12a: Standard Specification for Forged or Rolled Alloy and Stainless Steel Pipe Flanges, Forged Fittings, and Valves and Parts for High-Temperature Service