Tool steel

Last updated

Tool steel refers to a variety of carbon steel and alloy steel that are particularly well-suited to be made into tools. Their suitability comes from their distinctive hardness, resistance to abrasion and deformation, and their ability to hold a cutting edge at elevated temperatures. As a result, tool steels are suited for use in the shaping of other materials. With a carbon content between 0.5% and 1.5%, tool steels are manufactured under carefully controlled conditions to produce the required quality. The presence of carbides in their matrix plays the dominant role in the qualities of tool steel. The four major alloying elements that form carbides in tool steel are: tungsten, chromium, vanadium and molybdenum. The rate of dissolution of the different carbides into the austenite form of the iron determines the high-temperature performance of steel (slower is better, making for a heat-resistant steel). Proper heat treatment of these steels is important for adequate performance. [1] The manganese content is often kept low to minimize the possibility of cracking during water quenching.


There are six groups of tool steels: water-hardening, cold-work, shock-resistant, high-speed, hot-work, and special purpose. The choice of group to select depends on cost, working temperature, required surface hardness, strength, shock resistance, and toughness requirements. [2] The more severe the service condition (higher temperature, abrasiveness, corrosiveness, loading), the higher the alloy content and consequent amount of carbides required for the tool steel.

Tool steels are used for cutting, pressing, extruding, and coining of metals and other materials. Their use in tooling is essential; injection molds for example require tool steels for their resistance to abrasion- an important criterion for mold durability which enables hundreds of thousands of moldings operations over its lifetime.

The AISI-SAE grades of tool steel is the most common scale used to identify various grades of tool steel. Individual alloys within a grade are given a number; for example: A2, O1, etc.

Water-hardening group

W-group tool steel gets its name from its defining property of having to be water quenched. W-grade steel is essentially high carbon plain-carbon steel. This group of tool steel is the most commonly used tool steel because of its low cost compared to others. They work well for parts and applications where high temperatures are not encountered; above 150 °C (302 °F) it begins to soften to a noticeable degree. Its hardenability is low, so W-group tool steels must be subjected to a rapid quenching, requiring the use of water. These steels can attain high hardness (above HRC 66) and are rather brittle compared to other tool steels. W-steels are still sold, especially for springs, but are much less widely used than they were in the 19th and early 20th centuries. This is partly because W-steels warp and crack much more during quench than oil-quenched or air hardening steels.

The toughness of W-group tool steels is increased by alloying with manganese, silicon and molybdenum. Up to 0.20% of vanadium is used to retain fine grain sizes during heat treating.

Typical applications for various carbon compositions are for W-steels:

Cold-work group

The cold-work tool steels include the O series (oil-hardening), the A series (air-hardening), and the D series (high carbon-chromium). These are steels used to cut or form materials that are at low temperatures. This group possesses high hardenability and wear resistance, and average toughness and heat softening resistance. They are used in production of larger parts or parts that require minimal distortion during hardening. The use of oil quenching and air-hardening helps reduce distortion, avoiding the higher stresses caused by the quicker water quenching. More alloying elements are used in these steels, as compared to the water-hardening class. These alloys increase the steels' hardenability, and thus require a less severe quenching process and as a result are less likely to crack. They have high surface hardness and are often used to make knife blades. The machinability of the oil hardening grades is high but for the high carbon-chromium types is low.

Oil-hardening: the O series

This series includes an O1 type, an O2 type, an O6 type and an O7 type. All steels in this group are typically hardened at 800 °C, oil quenched, then tempered at <200 °C. [3] [4] [5] [6] [7]

O10.90% C, 1.0–1.4% Mn, 0.50% Cr, 0.50% W, 0.30% Si, 0.20% V It is a cold work steel used for gauges, cutting tools, woodworking tools and knives. It can be hardened to 66 HRC, typically used at Rc61-63. Vanadium is optional. Also sold as Arne, [8] SKS3, 1.2510 and 100MnCrW4.
O20.90% C, 1.5–2.0% Mn, 0.30% Cr, 0.30% Si, 0.15% V It is a cold work steel used for gauges, cutting tools, woodworking tools and knives. It can be hardened to 66 HRC, typically used at Rc61-63. Also sold as 1.2842 and 90MnCrV8. [9]
O61.45% C, 1.0% Mn, 1.0% Si, 0.3% Mo It is a cold work oil-hardening, graphitic tool steel with outstanding resistance to metal-to-metal sliding wear and galling. APPLICATIONS: Thread gauges, master gages, cams, bushings, sleeves, meat granulator plates, arbors, forming rolls, shear blades, punches, dies, bar feed guides [10]

Air-hardening: the A series

The first air-hardening-grade tool steel was mushet steel, which was known as air-hardening steel at the time.

Modern air-hardening steels are characterized by low distortion during heat treatment because of their high-chromium content. Their machinability is good and they have a balance of wear resistance and toughness (i.e. between the D and shock-resistant grades). [11]

A2 [12] 1.0% C, 1.0% Mn, 5.0% Cr, 0.3% Ni, 1.0% Mo, 0.15–0.50% V A common general purpose tool steel; it is the most commonly used variety of air-hardening steel. It is commonly used for blanking and forming punches, trimming dies, thread rolling dies, and injection molding dies. [11]
A3 [13] 1.25% C, 0.5% Mn, 5.0% Cr, 0.3% Ni, 0.9–1.4% Mo, 0.8–1.4% V
A4 [14] 1.0% C, 2.0% Mn, 1.0% Cr, 0.3% Ni, 0.9–1.4% Mo
A6 [15] 0.7% C, 1.8–2.5% Mn, 0.9–1.2% Cr, 0.3% Ni, 0.9–1.4% MoThis type of tool steel air-hardens at a relatively low temperature (approximately the same temperature as oil-hardening types) and is dimensionally stable. Therefore, it is commonly used for dies, forming tools, and gauges that do not require extreme wear resistance but do need high stability. [11]
A7 [16] 2.00–2.85% C, 0.8% Mn, 5.00–5.75% Cr, 0.3% Ni, 0.9–1.4% Mo, 3.9–5.15% V, 0.5–1.5 W
A8 [17] 0.5–0.6% C, 0.5% Mn, 4.75–5.50% Cr, 0.3% Ni, 1.15–1.65% Mo, 1.0–1.5 W
A9 [18] 0.5% C, 0.5% Mn, 0.95–1.15% Si, 4.75–5.00% Cr, 1.25–1.75% Ni, 1.3–1.8% Mo, 0.8–1.4% V
A10 [19] 1.25–1.50% C, 1.6–2.1% Mn, 1.0–1.5% Si, 1.55–2.05% Ni, 1.25–1.75% MoThis grade contains a uniform distribution of graphite particles to increase machinability and provide self-lubricating properties. It is commonly used for gauges, arbors, shears, and punches. [20]

High carbon-chromium: the D series

The D series of the cold-work class of tool steels, which originally included types D2, D3, D6, and D7, contains between 10% and 13% chromium (which is unusually high). These steels retain their hardness up to a temperature of 425 °C (797 °F). Common applications for these tool steels include forging dies, die-casting die blocks, and drawing dies. Due to their high chromium content, certain D-type tool steels are often considered stainless or semi-stainless, however their corrosion resistance is very limited due to the precipitation of the majority of their chromium and carbon constituents as carbides.

D21.5% C, 11.0–13.0% Cr; additionally 0.45% Mn, 0.030% P, 0.030% S, 1.0% V, 0.9% Mo, 0.30% Si D2 is very wear resistant but not as tough as lower alloyed steels. The mechanical properties of D2 are very sensitive to heat treatment. It is widely used for the production of shear blades, planer blades and industrial cutting tools; sometimes used for knife blades.

Shock-resisting group

The high shock resistance and good hardenability are provided by chromium-tungsten, silicon-molybdenum, silicon-manganese alloying. Shock-resisting group tool steels (S) are designed to resist shock at both low and high temperatures. A low carbon content is required for the necessary toughness (approximately 0.5% carbon). Carbide-forming alloys provide the necessary abrasion resistance, hardenability, and hot-work characteristics. This family of steels displays very high impact toughness and relatively low abrasion resistance and can attain relatively high hardness (HRC 58/60). In the US, toughness usually derives from 1 to 2% silicon and 0.5–1% molybdenum content. In Europe, shock steels often contain 0.5–0.6% carbon and around 3% nickel. A range of 1.75% to 2.75% nickel is still used in some shock resisting and high strength low alloy steels (HSLA), such as L6, 4340, and Swedish saw steel, but it is relatively expensive. An example of its use is in the production of jackhammer bits.

High-speed group

Hot-working group

Hot-working steels are a group of steel used to cut or shape material at high temperatures. H-group tool steels were developed for strength and hardness during prolonged exposure to elevated temperatures. These tool steels are low carbon and moderate to high alloy that provide good hot hardness and toughness and fair wear resistance due to a substantial amount of carbide. [1] H1 to H19 are based on a chromium content of 5%; H20 to H39 are based on a tungsten content of 9-18% and a chromium content of 3–4%; H40 to H59 are molybdenum based.

Examples include DIN 1.2344 tool steel (H13).

Special-purpose group


AISI-SAE tool steel grades [21]
Defining propertyAISI-SAE gradeSignificant characteristics
AAir-hardening; medium alloy
DHigh carbon; high chromium
Shock resistingS
High speedTTungsten base
MMolybdenum base
Hot-workingHH1–H19: chromium base
H20–H39: tungsten base
H40–H59: molybdenum base
Plastic moldP
Special purposeLLow alloy
FCarbon tungsten

See also

Related Research Articles

Heat treating Process of heating something to alter it

Heat treating is a group of industrial, thermal and metalworking processes used to alter the physical, and sometimes chemical, properties of a material. The most common application is metallurgical. Heat treatments are also used in the manufacture of many other materials, such as glass. Heat treatment involves the use of heating or chilling, normally to extreme temperatures, to achieve the desired result such as hardening or softening of a material. Heat treatment techniques include annealing, case hardening, precipitation strengthening, tempering, carburizing, normalizing and quenching. Although the term heat treatment applies only to processes where the heating and cooling are done for the specific purpose of altering properties intentionally, heating and cooling often occur incidentally during other manufacturing processes such as hot forming or welding.

Stellite is a range of cobalt-chromium alloys designed for wear resistance. The alloys may also contain tungsten or molybdenum and a small but important amount of carbon.

Martensitic stainless steel

Stainless steels may be classified by their crystalline structure into four main types: austenitic, ferritic, martensitic, and duplex.Martensitic stainless steel is a specific type of stainless steel alloy that can be hardened and tempered through multiple ways of aging/heat treatment.

Carbon steel Steel in which the main interstitial alloying constituent is carbon

Carbon steel is a steel with carbon content from about 0.05% up to 2.1% by weight. The definition of carbon steel from the American Iron and Steel Institute (AISI) states:

High-speed steel Subset of tool steels

High-speed steel is a subset of tool steels, commonly used as cutting tool material.


Carburising, carburizing, or carburisation is a heat treatment process in which iron or steel absorbs carbon while the metal is heated in the presence of a carbon-bearing material, such as charcoal or carbon monoxide. The intent is to make the metal harder. Depending on the amount of time and temperature, the affected area can vary in carbon content. Longer carburizing times and higher temperatures typically increase the depth of carbon diffusion. When the iron or steel is cooled rapidly by quenching, the higher carbon content on the outer surface becomes hard due to the transformation from austenite to martensite, while the core remains soft and tough as a ferritic and/or pearlite microstructure.

Maraging steel

Maraging steels are steels that are known for possessing superior strength and toughness without losing ductility. Aging refers to the extended heat-treatment process. These steels are a special class of low-carbon ultra-high-strength steels that derive their strength not from carbon, but from precipitation of intermetallic compounds. The principal alloying element is 15 to 25 wt% nickel. Secondary alloying elements, which include cobalt, molybdenum and titanium, are added to produce intermetallic precipitates. Original development was carried out on 20 and 25 wt% Ni steels to which small additions of aluminium, titanium, and niobium were made; a rise in the price of cobalt in the late 1970s led to the development of cobalt-free maraging steels.


Case-hardening or surface hardening is the process of hardening the surface of a metal object while allowing the metal deeper underneath to remain soft, thus forming a thin layer of harder metal at the surface. For iron or steel with low carbon content, which has poor to no hardenability of its own, the case-hardening process involves infusing additional carbon or nitrogen into the surface layer. Case-hardening is usually done after the part has been formed into its final shape, but can also be done to increase the hardening element content of bars to be used in a pattern welding or similar process. The term face hardening is also used to describe this technique, when discussing modern armour.

Tempering (metallurgy) Process of heat treating used to increase toughness of iron-based alloys

Tempering is a process of heat treating, which is used to increase the toughness of iron-based alloys. Tempering is usually performed after hardening, to reduce some of the excess hardness, and is done by heating the metal to some temperature below the critical point for a certain period of time, then allowing it to cool in still air. The exact temperature determines the amount of hardness removed, and depends on both the specific composition of the alloy and on the desired properties in the finished product. For instance, very hard tools are often tempered at low temperatures, while springs are tempered at much higher temperatures.

Cryogenic hardening is a cryogenic treatment process where the material is cooled to approximately −185 °C (−301 °F), usually using liquid nitrogen. It can have a profound effect on the mechanical properties of certain steels, provided their composition and prior heat treatment are such that they retain some austenite at room temperature. It is designed to increase the amount of martensite in the steel's crystal structure, increasing its strength and hardness, sometimes at the cost of toughness. Presently this treatment is being used on tool steels, high-carbon, high-chromium steels and in some cases to cemented carbide to obtain excellent wear resistance. Recent research shows that there is precipitation of fine carbides in the matrix during this treatment which imparts very high wear resistance to the steels.

SAE steel grades

The SAE steel grades system is a standard alloy numbering system for steel grades maintained by SAE International.

Alloy steel

Alloy steel is steel that is alloyed with a variety of elements in total amounts between 1.0% and 50% by weight to improve its mechanical properties. Alloy steels are broken down into two groups: low alloy steels and high alloy steels. The difference between the two is disputed. Smith and Hashemi define the difference at 4.0%, while Degarmo, et al., define it at 8.0%. Most commonly, the phrase "alloy steel" refers to low-alloy steels.

Eglin steel (ES-1) is a high-strength, high-performance, low-alloy, low-cost steel, developed for new generation of bunker buster type bombs, e.g. the Massive Ordnance Penetrator and the improved version of the GBU-28 bomb known as EGBU-28. It was developed in collaboration between the US Air Force and the Ellwood National Forge Company.

AerMet alloy is an ultra-high strength type of martensitic alloy steel. The main alloying elements are cobalt and nickel, but chromium, molybdenum and carbon are also added. Its exceptional properties are hardness, tensile strength, fracture toughness and ductility. Aermet is weldable with no preheating needed. AerMet alloy is not corrosion resistant, so it must be sealed if used in a moist environment. AerMet is a registered trademark of Carpenter Technology Corporation.

Machinability is the ease with which a metal can be cut (machined) permitting the removal of the material with a satisfactory finish at low cost. Materials with good machinability require little power to cut, can be cut quickly, easily obtain a good finish, and do not wear the tooling much. The factors that typically improve a material's performance often degrade its machinability. Therefore, to manufacture components economically, engineers are challenged to find ways to improve machinability without harming performance.

Mangalloy Alloy steel containing around 13% manganese

Mangalloy, also called manganese steel or Hadfield steel, is an alloy steel containing an average of around 13% manganese. Mangalloy is known for its high impact strength and resistance to abrasion once in its work-hardened state.

DIN 1.2344 tool steel is a tool steel grade standardised for hot working. The main feature of this grade is the combination of alloyed elements of chromium, molybdenum and vanadium, Cr-Mo-V, which provides a high wear resistance to thermal shock. It is well known as for its great strength, and heat resistance. It is heavily used for die casting in the cold heading field. The presence of high vanadium in DIN 1.2344 can handle the abrasion at both low and high temperatures. It always provides a uniform and high level of machinability. This tool steel is mostly used for aluminum, magnesium and zinc die casting.

USAF-96 is a high-strength, high-performance, low-alloy, low-cost steel, developed for new generation of bunker buster type bombs, e.g. the Massive Ordnance Penetrator and the improved version of the GBU-28 bomb known as EGBU-28. It was developed by the US Air Force at the Eglin Air Force Munitions Directorate. It uses only materials domestic to the USA. In particular it requires no tungsten.

Shock resisting steels are a class of tool steels designed to resist breakage by shock. Under the AISI classification system there are seven types, labeled S1 to S7.


  1. 1 2 Verhoeven, John (2007). Steel Metallurgy for the Non-Metallurgist. ASM International. p. 159. ISBN   978-0-87170-858-8 . Retrieved 9 November 2014..
  2. Baumeister, Avallone, Baumeister (1978). "6". Marks' Standard Handbook for Mechanical Engineers, 8th ed. McGraw Hill. pp. 33, 34. ISBN   9780070041233.CS1 maint: multiple names: authors list (link)
  3. "Carpenter O6 Graphitic Tool Steel (AISI O6)". Retrieved 2017-11-20.
  4. "Crucible Steel KETOS® Tool Steel, AISI O1". Retrieved 2017-11-20.
  5. "AISI Type O2 Oil-hardening Tool Steel, oil quenched at 800°C, tempered at 260°C". Retrieved 2017-11-20.
  6. "AISI Type O7 Tool Steel". Retrieved 2017-11-20.
  7. "The Sousa Corp | Tool Steel Composition". Retrieved 2017-11-20.
  10. "High Speed Steel - Tool Steel - O6 - O6 Technical Data".
  11. 1 2 3 Oberg et al. 2004 , pp. 466–467.
  12. AISI A2, Efunda, archived from the original on 2012-04-02, retrieved 2010-12-25.
  13. AISI A3, Efunda, archived from the original on 2012-04-02, retrieved 2010-12-25.
  14. AISI A4, Efunda, archived from the original on 2012-04-02, retrieved 2010-12-25.
  15. AISI A6, Efunda, archived from the original on 2011-08-19, retrieved 2010-12-25.
  16. AISI A7, Efunda, archived from the original on 2011-09-16, retrieved 2010-12-25.
  17. AISI A8, Efunda, archived from the original on 2011-09-09, retrieved 2010-12-25.
  18. AISI A9, Efunda, archived from the original on 2012-04-02, retrieved 2010-12-25.
  19. AISI A10, Efunda, archived from the original on 2012-04-02, retrieved 2010-12-25.
  20. A-10 Tool Steel Material Information, archived from the original on 2004-04-04, retrieved 2010-12-25.
  21. Oberg et al. 2004 , p. 452.