Mushet steel

Last updated

Mushet steel, also known as Robert Mushet's Special Steel and, at the time of its use, self-hardening steel and air-hardening steel, [1] is considered to be both the first tool steel and the first air-hardening steel. [2] It was invented in 1868 by Robert Forester Mushet. Prior to Mushet steel, steel had to be quenched to harden it. [1] It later led to the discovery of high-speed steel. [3]

Contents

Discovery

In 1868 Mushet was asked to produce on contract a new type of cast steel invented by a Glasgow manufacturer. The cast steel proved too brittle to be of use for cutting tools, but it spurred Mushet to experiment with various new alloys. A crucible steel made from tungsten ore and iron ore rich in manganese turned out to hold a cutting edge better than any carbon steel. An additional property, that was completely unexpected at the time, was that this new alloy would harden when left to cool in air after forging rather than needing to be quenched. [4] :195

Mushet opted to keep the composition and production method of the new alloy a trade secret rather than patenting either. The ingredients were procured through intermediaries to conceal the relationship between the alloy and its ingredients. Mixing was done by Mushet and a few trusted men at his Dean Forest Steelworks with the ingredients being referred to by code words. The mixed ingredients were then shipped in barrels to Samuel Osborn & Company in Sheffield to be melted. While the composition of the alloy has been analyzed, the production process remains a secret. [4] :195

Properties

The chemical composition of Mushet steel varied; tungsten was the main alloying constituent, which ranged between 4 and 12%, while manganese (2–4%) and carbon (1.5–2.5%) were the secondary alloying constituents. Typical samples contain 9% tungsten, 2.5% manganese, and 1.85% carbon. [2]

Mushet steel was harder than standard water quenched steel. It was found that Mushet steel could be best hardened by submitting it to an air blast after forging. [1]

Mushet steel is non-magnetic. [2] [ why? ]

Significance

Mushet steel was primarily used in machine tools due to its ability to retain its hardness at high temperatures. In 1894, Frederick Winslow Taylor conducted machining comparison tests between Mushet steel and high carbon tool steel. He found that it could cut 41 to 47% faster on hard tire steel forgings and approximately 90% faster on mild steels. He also found that if a stream of water was used as a cutting fluid the cutting speed could be increased by 30%. After Taylor's tests results were published Mushet and other self-hardening steels became popular in machine tools. [3] Prior to Taylor's tests Mushet steel was often just used to increase the time between regrinds, take larger cuts, or machine harder materials. [1] [2]

In 1899 and 1900, [5] Taylor and Maunsel White were experimenting with hardening processes for Mushet steel and other self-hardening steels. They discovered if the steel is heated to near its melting point it creates a more durable metal. The metal will retain its hardness up to a red heat. This type of hardened self-hardening steel was the first high speed steel. [3]

Related Research Articles

<span class="mw-page-title-main">Alloy</span> Mixture or metallic solid solution composed of two or more elements

An alloy is a mixture of chemical elements of which in most cases at least one is a metallic element, although it is also sometimes used for mixtures of elements; herein only metallic alloys are described. Most alloys are metallic and show good electrical conductivity, ductility, opacity, and luster, and may have properties that differ from those of the pure elements such as increased strength or hardness. In some cases, an alloy may reduce the overall cost of the material while preserving important properties. In other cases, the mixture imparts synergistic properties such as corrosion resistance or mechanical strength.

<span class="mw-page-title-main">Steel</span> Alloy of iron and carbon

Steel is an alloy of iron and carbon with improved strength and fracture resistance compared to other forms of iron. Because of its high tensile strength and low cost, steel is one of the most commonly manufactured materials in the world. Steel is used in buildings, as concrete reinforcing rods, in bridges, infrastructure, tools, ships, trains, cars, bicycles, machines, electrical appliances, furniture, and weapons.

<span class="mw-page-title-main">Heat treating</span> Process of heating something to alter it

Heat treating is a group of industrial, thermal and metalworking processes used to alter the physical, and sometimes chemical, properties of a material. The most common application is metallurgical. Heat treatments are also used in the manufacture of many other materials, such as glass. Heat treatment involves the use of heating or chilling, normally to extreme temperatures, to achieve the desired result such as hardening or softening of a material. Heat treatment techniques include annealing, case hardening, precipitation strengthening, tempering, carburizing, normalizing and quenching. Although the term heat treatment applies only to processes where the heating and cooling are done for the specific purpose of altering properties intentionally, heating and cooling often occur incidentally during other manufacturing processes such as hot forming or welding.

<span class="mw-page-title-main">Carbon steel</span> Steel in which the main interstitial alloying constituent is carbon

Carbon steel is a steel with carbon content from about 0.05 up to 2.1 percent by weight. The definition of carbon steel from the American Iron and Steel Institute (AISI) states:

<span class="mw-page-title-main">Tool steel</span> Any of various steels that are particularly well-suited to be made into tools and tooling

Tool steel is any of various carbon steels and alloy steels that are particularly well-suited to be made into tools and tooling, including cutting tools, dies, hand tools, knives, and others. Their suitability comes from their distinctive hardness, resistance to abrasion and deformation, and their ability to hold a cutting edge at elevated temperatures. As a result, tool steels are suited for use in the shaping of other materials, as for example in cutting, machining, stamping, or forging.

<span class="mw-page-title-main">High-speed steel</span> Subset of tool steels

High-speed steel is a subset of tool steels, commonly used as cutting tool material.

<span class="mw-page-title-main">Quenching</span> Rapid cooling of a workpiece to obtain certain material properties

In materials science, quenching is the rapid cooling of a workpiece in water, gas, oil, polymer, air, or other fluids to obtain certain material properties. A type of heat treating, quenching prevents undesired low-temperature processes, such as phase transformations, from occurring. It does this by reducing the window of time during which these undesired reactions are both thermodynamically favorable and kinetically accessible; for instance, quenching can reduce the crystal grain size of both metallic and plastic materials, increasing their hardness.

<span class="mw-page-title-main">Case-hardening</span> Process of hardening the surface of a metal object

Case-hardening or carburization is the process of introducing carbon to the surface of a low carbon iron or much more commonly low carbon steel object in order to enable the surface to be hardened.

<span class="mw-page-title-main">Tempering (metallurgy)</span> Process of heat treating used to increase the toughness of iron-based alloys

Tempering is a process of heat treating, which is used to increase the toughness of iron-based alloys. Tempering is usually performed after hardening, to reduce some of the excess hardness, and is done by heating the metal to some temperature below the critical point for a certain period of time, then allowing it to cool in still air. The exact temperature determines the amount of hardness removed, and depends on both the specific composition of the alloy and on the desired properties in the finished product. For instance, very hard tools are often tempered at low temperatures, while springs are tempered at much higher temperatures.

<span class="mw-page-title-main">Tool bit</span> Non-rotary cutting tool used in machining

In machining, a tool bit is a non-rotary cutting tool used in metal lathes, shapers, and planers. Such cutters are also often referred to by the set-phrase name of single-point cutting tool, as distinguished from other cutting tools such as a saw or water jet cutter. The cutting edge is ground to suit a particular machining operation and may be resharpened or reshaped as needed. The ground tool bit is held rigidly by a tool holder while it is cutting.

Sword making, historically, has been the work of specialized smiths or metalworkers called bladesmiths or swordsmiths. Swords have been made of different materials over the centuries, with a variety of tools and techniques. While there are many criteria for evaluating a sword, generally the four key criteria are hardness, strength, flexibility and balance. Early swords were made of copper, which bends easily. Bronze swords were stronger; by varying the amount of tin in the alloy, a smith could make various parts of the sword harder or tougher to suit the demands of combat service. The Roman gladius was an early example of swords forged from blooms of steel.

<span class="mw-page-title-main">Hardened steel</span> Carbon steel quenched and tempered after a heat treatment

The term hardened steel is often used for a medium or high carbon steel that has been given heat treatment and then quenching followed by tempering. The quenching results in the formation of metastable martensite, the fraction of which is reduced to the desired amount during tempering. This is the most common state for finished articles such as tools and machine parts. In contrast, the same steel composition in annealed state is softer, as required for forming and machining.

<span class="mw-page-title-main">Alloy steel</span> Steel alloyed with a variety of elements

Alloy steel is steel that is alloyed with a variety of elements in amounts between 1.0% and 50% by weight, typically to improve its mechanical properties.

Eglin steel (ES-1) is a high-strength, high-performance, low-alloy, low-cost steel, developed for a new generation of bunker buster type bombs, e.g. the Massive Ordnance Penetrator and the improved version of the GBU-28 bomb known as EGBU-28. It was developed in collaboration between the US Air Force and the Ellwood National Forge Company.

<span class="mw-page-title-main">Robert Forester Mushet</span> British metallurgist and businessman

Robert Forester Mushet was a British metallurgist and businessman, born on 8 April 1811, in Coleford, in the Forest of Dean, Gloucestershire, England. He was the youngest son of Scottish parents, Agnes Wilson and David Mushet; an ironmaster, formerly of the Clyde, Alfreton and Whitecliff Ironworks.

Honyaki (本焼) is the name for the Japanese traditional method of metalwork construction most often seen in kitchen knives by forging a blade, with a technique most similar to the tradition of nihonto, from a single piece of high-carbon steel covered with clay to yield upon quench a soft, resilient spine, a hamon, and a hard, sharp edge. Honyaki as a term alone can refer to either mizu honyaki (water-quench) or abura honyaki. The goal is to produce a sharper, longer lasting edge than is usually achievable with the lamination method. The term has been adapted to describe high-end mono-stainless in Japan and carbon blades by non-Japanese bladesmiths that have a hamon but are made with Western steel, heat treat, equipment, finishing, and design.

<span class="mw-page-title-main">Cold saw</span> Type of circular saw

A cold saw is a circular saw designed to cut metal which uses a toothed blade to transfer the heat generated by cutting to the chips created by the saw blade, allowing both the blade and material being cut to remain cool. This is in contrast to an abrasive saw, which abrades the metal and generates a great deal of heat absorbed by the material being cut and saw blade.

<span class="mw-page-title-main">Mangalloy</span> Alloy steel containing around 13% manganese

Mangalloy, also called manganese steel or Hadfield steel, is an alloy steel containing an average of around 13% manganese. Mangalloy is known for its high impact strength and resistance to abrasion once in its work-hardened state.

USAF-96 is a high-strength, high-performance, low-alloy, low-cost steel, developed for new generation of bunker buster type bombs, e.g. the Massive Ordnance Penetrator and the improved version of the GBU-28 bomb known as EGBU-28. It was developed by the US Air Force at the Eglin Air Force Munitions Directorate. It uses only materials domestic to the USA. In particular it requires no tungsten.

References

  1. 1 2 3 4 Becker 1910 , pp. 13–14.
  2. 1 2 3 4 Stoughton 1908 , pp. 408–409.
  3. 1 2 3 Oberg & Jones 1918 , pp. 278–279.
  4. 1 2 Rolt, L.T.C. (1965). A Short History of Machine Tools. Cambridge, Massachusetts: The MIT Press.
  5. Kanigel 1997.

Bibliography