This article relies largely or entirely on a single source .(November 2011) |
A flushometer is a metal water-diverter that uses an inline handle to flush tankless toilets or urinals. It was invented by William Elvis Sloan and is a product of the Sloan Valve Company. [1]
It uses water pressure from the water supply system rather than gravity from a raised tank like in previous models.
A diaphragm separates a pressure chamber from the main water supply. A narrow passageway leads from the main water supply into the pressure chamber. It is the narrowness of this passage that meters the flow by slowing repressurizing of the pressure chamber after the action of a flush. The diaphragm technology allows the flush valve to open and let water into the bowl. A main cylinder valve operates up and down. A groove in this cylinder allows water from the main supply to flow through when it is in a mid position. The valve is shut off at both its top and bottom positions. A second valve, placed within the main cylinder valve, releases the water in the topmost pressure chamber when the flush lever is activated, sending the main cylinder valve shooting upwards. The topmost pressure chamber slowly refills through its narrow passageway, pushing the valve cylinder back down gradually. A flush occurs while it is in its open mid positions. Because the water is gradually shut off, slower water at the end of the cycle that will not activate the siphon serves to refill the bowl. The valve cannot be kept open by holding the flush lever in the activated position, wasting water, because this only sends the main cylinder valve all the way up to its topmost shut off position. A flush can only occur when the valve is in one of its mid positions. [1]
A flushometer is usually installed in a commercial setting with the exception of some older apartments in large cities [2] , as it provides a high-pressure and better-performing wash and flush than a normal gravity toilet. However, a flushometer requires that the building have a larger supply line than is normally found in small to medium residential buildings, and therefore such buildings typically use tank-type toilets.[ citation needed ]
According to a study done on toilet plumes, this type of toilet produces far more droplets than other types; both in total droplets and droplets per litre flushed. [3]
A valve is a device or natural object that regulates, directs or controls the flow of a fluid by opening, closing, or partially obstructing various passageways. Valves are technically fittings, but are usually discussed as a separate category. In an open valve, fluid flows in a direction from higher pressure to lower pressure. The word is derived from the Latin valva, the moving part of a door, in turn from volvere, to turn, roll.
Aqua-Lung was the first open-circuit, self-contained underwater breathing apparatus to achieve worldwide popularity and commercial success. This class of equipment is now commonly referred to as a twin-hose diving regulator, or demand valve. The Aqua-Lung was invented in France during the winter of 1942–1943 by two Frenchmen: engineer Émile Gagnan and Jacques Cousteau, who was a Naval Lieutenant. It allowed Cousteau and Gagnan to film and explore underwater more easily.
A diaphragm pump is a positive displacement pump that uses a combination of the reciprocating action of a rubber, thermoplastic or teflon diaphragm and suitable valves on either side of the diaphragm (check valve, butterfly valves, flap valves, or any other form of shut-off valves) to pump a fluid.
A flush toilet is a toilet that disposes of human waste by using the force of water to channel it through a drainpipe to another location for treatment, either nearby or at a communal facility. Flush toilets can be designed for sitting or squatting, in the case of squat toilets. Most modern sewage treatment systems are also designed to process specially designed toilet paper. The opposite of a flush toilet is a dry toilet, which uses no water for flushing.
A check valve, non-return valve, reflux valve, retention valve, foot valve, or one-way valve is a valve that normally allows fluid to flow through it in only one direction.
A diving regulator or underwater diving regulator is a pressure regulator that controls the pressure of breathing gas for underwater diving. The most commonly recognised application is to reduce pressurized breathing gas to ambient pressure and deliver it to the diver, but there are also other types of gas pressure regulator used for diving applications. The gas may be air or one of a variety of specially blended breathing gases. The gas may be supplied from a scuba cylinder carried by the diver, in which case it is called a scuba regulator, or via a hose from a compressor or high-pressure storage cylinders at the surface in surface-supplied diving. A gas pressure regulator has one or more valves in series which reduce pressure from the source, and use the downstream pressure as feedback to control the delivered pressure, or the upstream pressure as feedback to prevent excessive flow rates, lowering the pressure at each stage.
A tap is a valve controlling the release of a fluid.
A plumbing fixture is an exchangeable device which can be connected to a plumbing system to deliver and drain water.
A drain-waste-vent system is the combination of pipes and plumbing fittings that captures sewage and greywater within a structure and routes it toward a water treatment system. It includes venting to the exterior environment to prevent a vacuum from forming and impeding fixtures such as sinks, showers, and toilets from draining freely, and employs water-filled traps to block dangerous sewer gasses from entering a plumbed structure.
A ballcock is a mechanism or machine for filling water tanks, such as those found in flush toilets, while avoiding overflow and backflow. The modern ballcock was invented by José Antonio de Alzate y Ramírez, a Mexican priest and scientist, who described the device in 1790 in the Gaceta de Literatura Méxicana. The ballcock device was patented in 1797 for use in steam engines by Edmund Cartwright.
An irrigation sprinkler is a device used to irrigate (water) agricultural crops, lawns, landscapes, golf courses, and other areas. They are also used for cooling and for the control of airborne dust. Sprinkler irrigation is the method of applying water in a controlled manner in way similar to rainfall. The water is distributed through a network that may consist of pumps, valves, pipes, and sprinklers.
In internal combustion engines with carburetors, a choke valve or choke modifies the air pressure in the intake manifold, thereby altering the air–fuel ratio entering the engine. Choke valves are generally used in naturally aspirated engines to supply a richer fuel mixture when starting the engine. Most choke valves in engines are butterfly valves mounted upstream of the carburetor jet to produce a higher partial vacuum, which increases the fuel draw.
A metering pump moves a precise volume of liquid in a specified time period providing an accurate volumetric flow rate. Delivery of fluids in precise adjustable flow rates is sometimes called metering. The term "metering pump" is based on the application or use rather than the exact kind of pump used, although a couple types of pumps are far more suitable than most other types of pumps.
Sloan Valve Company is a privately held American company specializing in plumbing valves and fixtures.
A pressure regulator is a valve that controls the pressure of a fluid to a desired value, using negative feedback from the controlled pressure. Regulators are used for gases and liquids, and can be an integral device with a pressure setting, a restrictor and a sensor all in the one body, or consist of a separate pressure sensor, controller and flow valve.
A pressure-balanced valve provides water at nearly constant temperature to a shower or bathtub, despite pressure fluctuations in either the hot or cold supply lines.
A pressure carburetor is a type of fuel metering system manufactured by the Bendix Corporation for piston aircraft engines, starting in the 1940s. It is recognized as an early type of throttle-body fuel injection and was developed to prevent fuel starvation during inverted flight.
Of the three types of carburetors used on large, high-performance aircraft engines manufactured in the United States during World War II, the Bendix-Stromberg pressure carburetor was the one most commonly found. The other two carburetor types were manufactured by Chandler Groves and Chandler Evans Control Systems (CECO). Both of these types of carburetors had a relatively large number of internal parts, and in the case of the Holley Carburetor, there were complications in its "variable venturi" design.
A toilet plume is the cloud like dispersal of microscopic sewage particles & water vapor as a result of flushing a toilet. Day to day use of a toilet by healthy individuals is considered to be of a lower health risk. However this dynamic rapidly changes if an individual is fighting an illness and currently shedding out large quantities of an infectious virulent pathogen in their urine, feces or vomitus. There is evidence that specific pathogens such as norovirus or SARS coronavirus could potentially be spread by toilet aerosols, but as of 2015 no direct experimental studies had refuted actual disease transmission from toilet aerosols. It has been hypothesized that dispersal of pathogens may be reduced by closing the toilet lid before flushing, and by using toilets with lower flush energy. 2024 Science empirically built on to this theory, by illustrating that the viruses that toilet plume contains still spreads out the gaps in the seat onto the walls and concentrating on the surrounding floors.
The mechanism of diving regulators is the arrangement of components and function of gas pressure regulators used in the systems which supply breathing gases for underwater diving. Both free-flow and demand regulators use mechanical feedback of the downstream pressure to control the opening of a valve which controls gas flow from the upstream, high-pressure side, to the downstream, low-pressure side of each stage. Flow capacity must be sufficient to allow the downstream pressure to be maintained at maximum demand, and sensitivity must be appropriate to deliver maximum required flow rate with a small variation in downstream pressure, and for a large variation in supply pressure, without instability of flow. Open circuit scuba regulators must also deliver against a variable ambient pressure. They must be robust and reliable, as they are life-support equipment which must function in the relatively hostile seawater environment, and the human interface must be comfortable over periods of several hours.