Submersible pump

Last updated
A 0.75 HP bore-well submersible pump which had been used to pump groundwater Submersible pump 0.75HP.jpg
A 0.75 HP bore-well submersible pump which had been used to pump groundwater
One style of submersible pump for industrial use. Outlet pipe and electrical cable not connected. NS non clog submersible pumps.jpg
One style of submersible pump for industrial use. Outlet pipe and electrical cable not connected.

A submersible pump (or electric submersible pump (ESP) is a device which has a hermetically sealed motor close-coupled to the pump body. The whole assembly is submerged in the fluid to be pumped. The main advantage of this type of pump is that it prevents pump cavitation, a problem associated with a high elevation difference between the pump and the fluid surface. Submersible pumps push fluid to the surface, rather than jet pumps, which create a vacuum and rely upon atmospheric pressure. Submersibles use pressurized fluid from the surface to drive a hydraulic motor downhole, rather than an electric motor, and are used in heavy oil applications with heated water as the motive fluid.

Contents

History

In. 1928 Armenian oil delivery system engineer and inventor Armais Arutunoff successfully installed the first submersible oil pump in an oil field. [1] In 1929, Pleuger Pumps (today Pleuger Industries) developed the design of the submersible turbine pump, the forerunner of the modern multi-stage submersible pump. [2]

Working principle

Electric submersible pumps are multistage centrifugal pumps operating in a vertical position. Liquids, accelerated by the impeller, lose their kinetic energy in the diffuser, where a conversion of kinetic to pressure energy takes place. This is the main operational mechanism of radial and mixed flow pumps. In the HSP, the motor is a hydraulic motor rather than an electrical motor, and may be closed cycle (keeping the power fluid separate from the produced fluid) or open cycle (mingling the power fluid with the produced fluid downhole, with surface separation).

The pump shaft is connected to the gas separator or the protector by a mechanical coupling at the bottom of the pump. Fluids enter the pump through an intake screen and are lifted by the pump stages. Other parts include the radial bearings (bushings) distributed along the length of the shaft, providing radial support to the pump shaft. An optional thrust bearing takes up part of the axial forces arising in the pump, but most of those forces are absorbed by the protector's thrust bearing.

There are also screw-type submersible pumps, there is a steel screw which is used as a working element in them. The screw allows the pump to work in water with a high sand content and other mechanical impurities.

Applications

Submersible pumps are found in many applications. Single stage pumps are used for drainage, sewage pumping, general industrial pumping and slurry pumping. They are also popular with Pond filters. Multiple stage submersible pumps are typically lowered down a borehole, and most typically used for residential, commercial, municipal and industrial water extraction (abstraction), water wells and in oil wells.

Other uses for submersible pumps include sewage treatment plants, seawater handling, fire fighting (since it is flame retardant cable), water well and deep well drilling, offshore drilling rigs, artificial lifts, mine dewatering, and irrigation systems.

Pumps in electrical hazardous locations used for combustible liquids or for water that may be contaminated with combustible liquids must be designed not to ignite the liquid or vapors.

Use in oil wells

Submersible pumps are used in oil production to provide a relatively efficient form of "artificial lift", able to operate across a broad range of flow rates and depths. [3] [4] By decreasing the pressure at the bottom of the well (by lowering bottom-hole flowing pressure, or increasing drawdown), significantly more oil can be produced from the well when compared with natural production.[ citation needed ] The pumps are typically electrically powered, referred to as Electrical Submersible Pumps (ESP) or if hydraulically powered, referred to as Hydraulic Submersible Pumps (HSP).[ citation needed ]

ESP systems consist of both surface components (housed in the production facility, for example an oil platform), and sub-surface components (found in the well hole). Surface components include the motor controller (often a variable speed controller), surface cables and transformers. The subsurface components are deployed by attaching to the downhole end of a tubing string, while at the surface, and then lowered into the well bore along with the tubing.

A high-voltage (3 to 5 kV) alternating-current source at the surface drives the subsurface motor. Until recently, ESPs had been costly to install due to the requirement of an electric cable extending from the source to the motor. This cable had to be wrapped around jointed tubing and connected at each joint. New coiled tubing umbilicals allow for both the piping and electric cable to be deployed with a single conventional coiled tubing unit. Cables for sensor and control data may also be included.

The subsurface components generally include a pump portion and a motor portion, with the motor downhole from the pump. The motor rotates a shaft that, in turn, rotates pump impellers to lift fluid through production tubing to the surface. These components must reliably work at high temperatures of up to 300 °F (149 °C) and high pressures of up to 5,000 psi (34 MPa), from deep wells of up to 12,000 feet (3.7 km) deep with high energy requirements of up to 1000 horsepower (750 kW). The pump itself is a multi-stage unit, with the number of stages being determined by the operating requirements. Each stage includes an impeller and diffuser. Each impeller is coupled to the rotating shaft and accelerates fluid from near the shaft radially outward. The fluid then enters a non-rotating diffuser, which is not coupled to the shaft and contains vanes that direct fluid back toward the shaft. Pumps come in diameters from 90 mm (3.5 inches) to 254 mm (10 inches) and vary between 1 metre (3 ft) and 8.7 metres (29 ft) in length. The motor used to drive the pump is typically a three-phase, squirrel cage induction motor, with a nameplate power rating in the range 7.5 kW to 560 kW (at 60 Hz). [3]

ESP assemblies may also include: seals coupled to the shaft between the motor and pump; screens to reject sand; and fluid separators at the pump intake that separate gas, oil and water. [3] ESPs have dramatically lower efficiencies with significant fractions of gas, greater than about 10% volume at the pump intake, so separating gas from oil prior to the pump can be important. Some ESPs include a water/oil separator which permits water to be re-injected downhole. As some wells produce up to 90% water, and fluid lift is a significant cost, re-injecting water before lifting it to the surface can reduce energy consumption and improve economics Given ESPs' high rotational speed of up to 4000 rpm (67 Hz) and tight clearances, they are not very tolerant of solids, such as sand.

There are at least 15 brands of oilfield ESPs used throughout the world.

Submersible pump cable (SPC)

Submersible pump cables in PVC and rubber, as described in text Submersible Pump Cable.jpg
Submersible pump cables in PVC and rubber, as described in text

Submersible pump cables are electrical conductors designed for use in wet ground or under water, with types specialized for pump environmental conditions. [5] [6] [7]

A submersible pump cable is a specialized product to be used for a submersible pump in a deep well, or in similarly harsh conditions. The cable needed for this type of application must be durable and reliable, as the installation location and environment can be extremely restrictive as well as hostile. As such, submersible pump cable can be used in both fresh and salt water. It is also suitable for direct burial and within well castings. A submersible pump cable's area of installation is physically restrictive. Cable manufacturers must keep these factors in mind to achieve the highest possible degree of reliability.

The size and shape of submersible pump cable can vary depending on the usage and preference and pumping instrument of the installer. Pump cables are made in single and multiple conductor types and may be flat or round in cross section; some types include control wires as well as power conductors for the pump motor. Conductors are often color-coded for identification and an overall cable jacket may also be color-coded.

In 3&4 Core cable as per right side SPC types image shown, plain Copper/Tinned Copper used as a conductor.

See also

Related Research Articles

<span class="mw-page-title-main">Pump</span> Device that imparts energy to the fluids by mechanical action

A pump is a device that moves fluids, or sometimes slurries, by mechanical action, typically converted from electrical energy into hydraulic or pneumatic energy.

<span class="mw-page-title-main">Wireline (cabling)</span> Technology used in oil and gas wells

In the oil and gas industry, the term wireline usually refers to the use of multi-conductor, single conductor or slickline cable, or "wireline", as a conveyance for the acquisition of subsurface petrophysical and geophysical data and the delivery of well construction services such as pipe recovery, perforating, plug setting and well cleaning and fishing. The subsurface geophysical and petrophysical information results in the description and analysis of subsurface geology, reservoir properties and production characteristics.

<span class="mw-page-title-main">Pumpjack</span> Drive for a reciprocating piston pump in an oil well

A pumpjack is the overground drive for a reciprocating piston pump in an oil well.

A gas lift or bubble pump is a type of pump that can raise fluid between elevations by introducing gas bubbles into a vertical outlet tube; as the bubbles rise within the tube they cause a drop in the hydrostatic pressure behind them, causing the fluid to be pulled up. Gas lifts are commonly used as artificial lifts for water or oil, using compressed air or water vapor.

<span class="mw-page-title-main">Sump pump</span> Type of pump

A sump pump is a pump used to remove water that has accumulated in a water-collecting sump basin, commonly found in the basements of homes and other buildings, and in other locations where water must be removed, such as construction sites. The water may enter via the perimeter drains of a basement waterproofing system funneling into the basin, or because of rain or natural ground water seepage if the basement is below the water table level.

<span class="mw-page-title-main">Centrifugal pump</span> Pump used to transport fluids by conversion of rotational kinetic energy

Centrifugal pumps are used to transport fluids by the conversion of rotational kinetic energy to the hydrodynamic energy of the fluid flow. The rotational energy typically comes from an engine or electric motor. They are a sub-class of dynamic axisymmetric work-absorbing turbomachinery. The fluid enters the pump impeller along or near to the rotating axis and is accelerated by the impeller, flowing radially outward into a diffuser or volute chamber (casing), from which it exits.

<span class="mw-page-title-main">Fluid coupling</span> Device used to transmit rotating mechanical power

A fluid coupling or hydraulic coupling is a hydrodynamic or 'hydrokinetic' device used to transmit rotating mechanical power. It has been used in automobile transmissions as an alternative to a mechanical clutch. It also has widespread application in marine and industrial machine drives, where variable speed operation and controlled start-up without shock loading of the power transmission system is essential.

<span class="mw-page-title-main">Blowout preventer</span> Specialized valve

A blowout preventer (BOP) is a specialized valve or similar mechanical device, used to seal, control and monitor oil and gas wells to prevent blowouts, the uncontrolled release of crude oil or natural gas from a well. They are usually installed in stacks of other valves.

Artificial lift is the use of artificial means to increase the flow of liquids, such as crude oil or water, from a production well. Generally this is achieved by the use of a mechanical device inside the well or by decreasing the weight of the hydrostatic column by injecting gas into the liquid some distance down the well. A newer method called Continuous Belt Transportation (CBT) uses an oil absorbing belt to extract from marginal and idle wells. Artificial lift is needed in wells when there is insufficient pressure in the reservoir to lift the produced fluids to the surface, but often used in naturally flowing wells to increase the flow rate above what would flow naturally. The produced fluid can be oil, water or a mix of oil and water, typically mixed with some amount of gas.

Gas well deliquification, also referred to as "gas well dewatering", is the general term for technologies used to remove water or condensates build-up from producing gas wells.

<span class="mw-page-title-main">Coiled tubing</span> Long metal pipe used in oil and gas wells

In the oil and gas industry, coiled tubing refers to a long metal pipe, normally 1 to 3.25 in in diameter which is supplied spooled on a large reel. It is used for interventions in oil and gas wells and sometimes as production tubing in depleted gas wells. Coiled tubing is often used to carry out operations similar to wirelining. The main benefits over wireline are the ability to pump chemicals through the coil and the ability to push it into the hole rather than relying on gravity. Pumping can be fairly self-contained, almost a closed system, since the tube is continuous instead of jointed pipe. For offshore operations, the 'footprint' for a coiled tubing operation is generally larger than a wireline spread, which can limit the number of installations where coiled tubing can be performed and make the operation more costly. A coiled tubing operation is normally performed through the drilling derrick on the oil platform, which is used to support the surface equipment, although on platforms with no drilling facilities a self-supporting tower can be used instead. For coiled tubing operations on sub-sea wells a mobile offshore drilling unit (MODU) e.g. semi-submersible, drillship etc. has to be utilized to support all the surface equipment and personnel, whereas wireline can be carried out from a smaller and cheaper intervention vessel. Onshore, they can be run using smaller service rigs, and for light operations a mobile self-contained coiled tubing rig can be used.

Slickline refers to a single strand wire which is used to run a variety of tools down into the wellbore for several purposes. It is used during well drilling operations in the oil and gas industry. In general, it can also describe a niche of the industry that involves using a slickline truck or doing a slickline job. Slickline looks like a long, smooth, unbraided wire, often shiny, silver/chrome in appearance. It comes in varying lengths, according to the depth of wells in the area it is used up to 35,000 feet in length. It is used to lower and raise downhole tools used in oil and gas well maintenance to the appropriate depth of the drilled well.

A downhole safety valve refers to a component on an oil and gas well, which acts as a failsafe to prevent the uncontrolled release of reservoir fluids in the event of a worst-case-scenario surface disaster. It is almost always installed as a vital component on the completion.

<span class="mw-page-title-main">Completion (oil and gas wells)</span> Last operation for oil and gas wells

Well completion is the process of making a well ready for production after drilling operations. This principally involves preparing the bottom of the hole to the required specifications, running in the production tubing and its associated down hole tools as well as perforating and stimulating as required. Sometimes, the process of running in and cementing the casing is also included. After a well has been drilled, should the drilling fluids be removed, the well would eventually close in upon itself. Casing ensures that this will not happen while also protecting the wellstream from outside incumbents, like water or sand.

Oilfield terminology refers to the jargon used by those working in fields within and related to the upstream segment of the petroleum industry. It includes words and phrases describing professions, equipment, and procedures specific to the industry. It may also include slang terms used by oilfield workers to describe the same.

A rotodynamic pump is a kinetic machine in which energy is continuously imparted to the pumped fluid by means of a rotating impeller, propeller, or rotor, in contrast to a positive-displacement pump in which a fluid is moved by trapping a fixed amount of fluid and forcing the trapped volume into the pump's discharge. Examples of rotodynamic pumps include adding kinetic energy to a fluid such as by using a centrifugal pump to increase fluid velocity or pressure.

Downhole oil–water separation (DOWS) technologies are apparatuses and methods that separate production fluids into a petroleum-rich stream and water-rich stream within an oil well. A DOWS system installed in a borehole will receive the fluids from an oil-producing zone in an oil reservoir and separate the mixture into a stream that is mostly water and a stream that is primarily crude oil and natural gas and direct the streams to different destinations. After the separation in the borehole, DOWS systems pump the petroleum-rich stream to the surface and inject the water-rich stream into a different zone or formation accessible to the same wellbore.

Petroleum production engineering is a subset of petroleum engineering.

<span class="mw-page-title-main">Marine pump</span>

A Marine pump is a pump which is used on board a vessel (ship) or an offshore platform.

References

  1. "A Historical Perspective of Oilfield Electrical Submersible Pump Industry". esppump.com. ESP pump.com. September 17, 2012. Retrieved November 16, 2017. With three employees, Arutunoff built and installed the first ESP in an oil well in the El Dorado field near Burns, Kansas.
  2. "A brief history of pumps". worldpumps.com. Elsevier Ltd. March 23, 2009. Retrieved November 16, 2017. 1929: Pleuger pioneers the submersible turbine pump motor
  3. 1 2 3 Lyons (ed), Standard Handbook of Petroleum & Natural Gas Engineerin, p. 662
  4. Other forms of artificial lift include Gas Lift, Beam Pumping, Plunger Lift and Progressive cavity pump.
  5. Pelikan, Bob (21 June 2017), "Submersible pump cable", The Pump Book, pp. 67–74, ISBN   978-0-615-18509-5
  6. Ray C. Mullin, Phil Simmons (2011), "Submersible Pump Cable", Electrical Wiring Residential, pp. 423–424, ISBN   978-1-4354-9826-6
  7. Robert J. Alonzo (19 January 2010). Electrical Codes, Standards, Recommended Practices and Regulations: An Examination of Relevant Safety Considerations. Elsevier. pp. 317–. ISBN   978-0-8155-2045-0 . Retrieved 16 November 2012.