A culvert is a structure that channels water past an obstacle or to a subterranean waterway. Typically embedded so as to be surrounded by soil, a culvert may be made from a pipe, reinforced concrete or other material. In the United Kingdom, the word can also be used for a longer artificially buried watercourse. [1]
Culverts are commonly used both as cross-drains to relieve drainage of ditches at the roadside, and to pass water under a road at natural drainage and stream crossings. When they are found beneath roads, they are frequently empty. A culvert may also be a bridge-like structure designed to allow vehicle or pedestrian traffic to cross over the waterway while allowing adequate passage for the water. Dry culverts are used to channel a fire hose beneath a noise barrier for the ease of firefighting along a highway without the need or danger of placing hydrants along the roadway itself.
Culverts come in many sizes and shapes including round, elliptical, flat-bottomed, open-bottomed, pear-shaped, and box-like constructions. The culvert type and shape selection is based on a number of factors including requirements for hydraulic performance, limitations on upstream water surface elevation, and roadway embankment height. [2]
The process of removing culverts to restore an open-air watercourse is known as daylighting. In the UK, the practice is also known as deculverting. [3]
Culverts can be constructed of a variety of materials including cast-in-place or precast concrete (reinforced or non-reinforced), galvanized steel, aluminum, or plastic (typically high-density polyethylene). Two or more materials may be combined to form composite structures. For example, open-bottom corrugated steel structures are often built on concrete footings.
Construction or installation at a culvert site generally results in disturbance of the site's soil, stream banks, or stream bed, and can result in the occurrence of unwanted problems such as scour holes or slumping of banks adjacent to the culvert structure. [2] [4]
Culverts must be properly sized and installed, and protected from erosion and scour. Many US agencies such as the Federal Highway Administration, Bureau of Land Management, [5] and Environmental Protection Agency, [6] as well as state or local authorities, [4] require that culverts be designed and engineered to meet specific federal, state, or local regulations and guidelines to ensure proper function and to protect against culvert failures.
Culverts are classified by standards for their load capacities, water flow capacities, life spans, and installation requirements for bedding and backfill. [2] Most agencies adhere to these standards when designing, engineering, and specifying culverts.
Culvert failures can occur for a wide variety of reasons including maintenance, environmental, and installation-related failures, functional or process failures related to capacity and volume causing the erosion of the soil around or under them, and structural or material failures that cause culverts to fail due to collapse or corrosion of the materials from which they are made. [7]
If the failure is sudden and catastrophic, it can result in injury or loss of life. Sudden road collapses are often the result of poorly designed and engineered culvert crossing sites or unexpected changes in the surrounding environment cause design parameters to be exceeded. Water passing through undersized culverts will scour away the surrounding soil over time. This can cause a sudden failure during medium-sized rain events. Accidents from culvert failure can also occur if a culvert has not been adequately sized and a flood event overwhelms the culvert, or disrupts the road or railway above it.
Ongoing culvert function without failure depends on proper design and engineering considerations being given to load, hydraulic flow, surrounding soil analysis, backfill and bedding compaction, and erosion protection. Improperly designed backfill support around culverts can result in material collapse or failure from inadequate load support. [7] [2]
For existing culverts which have experienced degradation, loss of structural integrity or need to meet new codes or standards, rehabilitation using a reline pipe may be preferred versus replacement. Sizing of a reline culvert uses the same hydraulic flow design criteria as that of a new culvert however as the reline culvert is meant to be inserted into an existing culvert or host pipe, reline installation requires the grouting of the annular space between the host pipe and the surface of reline pipe (typically using a low compression strength grout) so as to prevent or reduce seepage and soil migration. Grouting also serves as a means in establishing a structural connection between the liner, host pipe and soil. Depending on the size and annular space to be filled as well as the pipe elevation between the inlet and outlet, it may be necessary to add grout in multiple stages or "lifts". If multiple lifts are required, then a grouting plan is required, which should define the placement of grout feed tubes, air tubes, type of grout to be used, and if injecting or pumping grout, then the required developed pressure for injection. As the diameter of the reline pipe will be smaller than the host pipe, the cross-sectional flow area will be smaller. By selecting a reline pipe with a very smooth internal surface with an approximate Hazen-Williams Friction Factor C value of between 140–150, the decreased flow area can be offset, and hydraulic flow rates potentially increased by way of reduced surface flow resistance. Examples of pipe materials with high C-factors are high-density polyethylene (150) and polyvinyl chloride (140). [8]
Safe and stable stream crossings can accommodate wildlife and protect stream health, while reducing expensive erosion and structural damage. Undersized and poorly placed culverts can cause problems for water quality and aquatic organisms. Poorly designed culverts can degrade water quality via scour and erosion, as well as restrict the movement of aquatic organisms between upstream and downstream habitat. Fish are a common victim in the loss of habitat due to poorly designed crossing structures.
Culverts that offer adequate aquatic organism passage reduce impediments to movement of fish, wildlife, and other aquatic life that require instream passage. Poorly designed culverts are also more apt to become jammed with sediment and debris during medium to large scale rain events. If the culvert cannot pass the water volume in the stream, then the water may overflow the road embankment. This may cause significant erosion, ultimately washing out the culvert. The embankment material that is washed away can clog other structures downstream, causing them to fail as well. It can also damage crops and property. A properly sized structure and hard bank armoring can help to alleviate this pressure.
Culvert style replacement is a widespread practice in stream restoration. Long-term benefits of this practice include reduced risk of catastrophic failure and improved fish passage. If best management practices are followed, short-term impacts on the aquatic biology are minimal. [9]
While the culvert discharge capacity derives from hydrological and hydraulic engineering considerations, [10] this results often in large velocities in the barrel, creating a possible fish passage barrier. Critical culvert parameters in terms of fish passage are the dimensions of the barrel, particularly its length, cross-sectional shape, and invert slope. The behavioural response by fish species to culvert dimensions, light conditions, and flow turbulence may play a role in their swimming ability and culvert passage rate. There is no simple technical means to ascertain the turbulence characteristics most relevant to fish passage in culverts, but it is understood that the flow turbulence plays a key role in fish behaviour. [11] [12]
The interactions between swimming fish and vortical structures involve a broad range of relevant length and time scales. [13] Recent discussions emphasised the role of secondary flow motion, considerations of fish dimensions in relation to the spectrum of turbulence scales, and the beneficial role of turbulent structures provided that fish are able to exploit them. [11] [14] [15] [16] [17] [18] [19]
The current literature on culvert fish passage focuses mostly on fast-swimming fish species, but a few studies have argued for better guidelines for small-bodied fish including juveniles. [16] Finally, a solid understanding of turbulence typology is a basic requirement to any successful hydraulic structure design conducive of upstream fish passage. [20]
In the coastal plains of Queensland, Australia, torrential rains during the wet season place a heavy demand on culverts. The natural slope of the flood plains is often very small, and little fall (or head loss) is permissible in the culverts. Researchers developed and patented the design procedure of minimum energy loss culverts which yield small afflux. [21] [22] [23]
A minimum energy loss culvert or waterway is a structure designed with the concept of minimum head loss. The flow in the approach channel is contracted through a streamlined inlet into the barrel where the channel width is minimum, and then it is expanded in a streamlined outlet before being finally released into the downstream natural channel. Both the inlet and the outlet must be streamlined to avoid significant form losses. The barrel invert is often lowered to increase the discharge capacity.
The concept of minimum energy loss culverts was developed by a shire engineer in Victoria and a professor at the University of Queensland during the late 1960s. [24] While a number of small-size structures were designed and built in Victoria, some major structures were designed, tested and built in south-east Queensland.
In forestry, proper use of cross-drainage culverts can improve water quality while allowing forestry operations to continue.[ citation needed ]
A hydraulic jump is a phenomenon in the science of hydraulics which is frequently observed in open channel flow such as rivers and spillways. When liquid at high velocity discharges into a zone of lower velocity, a rather abrupt rise occurs in the liquid surface. The rapidly flowing liquid is abruptly slowed and increases in height, converting some of the flow's initial kinetic energy into an increase in potential energy, with some energy irreversibly lost through turbulence to heat. In an open channel flow, this manifests as the fast flow rapidly slowing and piling up on top of itself similar to how a shockwave forms.
A weir or low-head dam is a barrier across the width of a river that alters the flow characteristics of water and usually results in a change in the height of the river level. Weirs are also used to control the flow of water for outlets of lakes, ponds, and reservoirs. There are many weir designs, but commonly water flows freely over the top of the weir crest before cascading down to a lower level. There is no single definition as to what constitutes a weir.
A fish ladder, also known as a fishway, fish pass, fish steps, or fish cannon, is a structure on or around artificial and natural barriers to facilitate diadromous fishes' natural migration as well as movements of potamodromous species. Most fishways enable fish to pass around the barriers by swimming and leaping up a series of relatively low steps into the waters on the other side. The velocity of water falling over the steps has to be great enough to attract the fish to the ladder, but it cannot be so great that it washes fish back downstream or exhausts them to the point of inability to continue their journey upriver.
A tidal bore, often simply given as bore in context, is a tidal phenomenon in which the leading edge of the incoming tide forms a wave of water that travels up a river or narrow bay, reversing the direction of the river or bay's current. It is a strong tide that pushes up the river, against the current.
A settling basin, settling pond or decant pond is an earthen or concrete structure using sedimentation to remove settleable matter and turbidity from wastewater. The basins are used to control water pollution in diverse industries such as agriculture, aquaculture, and mining. Turbidity is an optical property of water caused by scattering of light by material suspended in that water. Although turbidity often varies directly with weight or volumetric measurements of settleable matter, correlation is complicated by variations in size, shape, refractive index, and specific gravity of suspended matter. Settling ponds may be ineffective at reducing turbidity caused by small particles with specific gravity low enough to be suspended by Brownian motion.
A spillway is a structure used to provide the controlled release of water downstream from a dam or levee, typically into the riverbed of the dammed river itself. In the United Kingdom, they may be known as overflow channels. Spillways ensure that water does not damage parts of the structure not designed to convey water.
Hydraulic head or piezometric head is a specific measurement of liquid pressure above a vertical datum.
The Manning formula or Manning's equation is an empirical formula estimating the average velocity of a liquid in an open channel flow. However, this equation is also used for calculation of flow variables in case of flow in partially full conduits, as they also possess a free surface like that of open channel flow. All flow in so-called open channels is driven by gravity.
A low-water crossing is a low-elevation roadway traversing over a waterbody that stays dry above the water when the flow is low, but is designed to get submerged under high-flow conditions such as floods. This type of crossing is much cheaper to build than a high bridge that keeps the road surface consistently above the highest water level, and is usually deployed in semi-arid areas where high-volume rainfall is rare and the existing channel is shallow, particularly in developing countries.
Internal erosion is the formation of voids within a soil caused by the removal of material by seepage. It is the second most common cause of failure in levees and one of the leading causes of failures in earth dams, responsible for about half of embankment dam failures.
In hydraulic engineering, a nappe is a sheet or curtain of water that flows over a weir or dam. The upper and lower water surface have well-defined characteristics that are created by the crest of a dam or weir. Both structures have different features that characterize how a nappe might flow through or over impervious concrete structures. Hydraulic engineers distinguish these two water structures in characterizing and calculating the formation of a nappe. Engineers account for the bathymetry of standing bodies or moving bodies of water. An appropriate crest is built for the dam or weir so that dam failure is not caused by nappe vibration or air cavitation from free-overall structures.
A drop structure, also known as a grade control, sill, or weir, is a manmade structure, typically small and built on minor streams, or as part of a dam's spillway, to pass water to a lower elevation while controlling the energy and velocity of the water as it passes over. Unlike most dams, drop structures are usually not built for water impoundment, diversion, or raising the water level. Mostly built on watercourses with steep gradients, they serve other purposes such as water oxygenation and erosion prevention.
Bridge scour is the removal of sediment such as sand and gravel from around bridge abutments or piers. Hydrodynamic scour, caused by fast flowing water, can carve out scour holes, compromising the integrity of a structure.
Hubert Chanson is a professional engineer and academic in hydraulic engineering and environmental fluid mechanics. Since 1990 he has worked at the University of Queensland.
In fluid dynamics, the Reynolds number is a dimensionless quantity that helps predict fluid flow patterns in different situations by measuring the ratio between inertial and viscous forces. At low Reynolds numbers, flows tend to be dominated by laminar (sheet-like) flow, while at high Reynolds numbers, flows tend to be turbulent. The turbulence results from differences in the fluid's speed and direction, which may sometimes intersect or even move counter to the overall direction of the flow. These eddy currents begin to churn the flow, using up energy in the process, which for liquids increases the chances of cavitation.
A stepped spillway is a spillway with steps on the spillway chute to assist in the dissipation of the kinetic energy of the descending water. This eliminates or reduces the need for an additional energy dissipator, such as a body of water, at the end of the spillway downstream.
Hydraulic jump in a rectangular channel, also known as classical jump, is a natural phenomenon that occurs whenever flow changes from supercritical to subcritical flow. In this transition, the water surface rises abruptly, surface rollers are formed, intense mixing occurs, air is entrained, and often a large amount of energy is dissipated. Numeric models created using the standard step method or HEC-RAS are used to track supercritical and subcritical flows to determine where in a specific reach a hydraulic jump will form.
Open channel spillways are dam spillways that utilize the principles of open-channel flow to convey impounded water in order to prevent dam failure. They can function as principal spillways, emergency spillways, or both. They can be located on the dam itself or on a natural grade in the vicinity of the dam.
Willi H. Hager is a Swiss civil engineer and Professor at the ETH Zurich, Department of Civil, Environmental and Geomatic Engineering, known for his work on hydraulics.
Ecohydraulics is an interdisciplinary science studying the hydrodynamic factors that affect the survival and reproduction of aquatic organisms and the activities of aquatic organisms that affect hydraulics and water quality. Considerations include habitat maintenance or development, habitat-flow interactions, and organism responses. Ecohydraulics assesses the magnitude and timing of flows necessary to maintain a river ecosystem and provides tools to characterize the relation between flow discharge, flow field, and the availability of habitat within a river ecosystem. Based on this relation and insights into the hydraulic conditions optimal for different species or communities, ecohydraulics-modeling predicts how hydraulic conditions in a river change, under different development scenarios, the aquatic habitat of species or ecological communities. Similar considerations also apply to coastal, lake, and marine eco-systems.