Oil well

Last updated
The pumpjack, such as this one located south of Midland, Texas, is a common sight in West Texas West Texas Pumpjack.JPG
The pumpjack, such as this one located south of Midland, Texas, is a common sight in West Texas

An oil well is a boring in the Earth that is designed to bring petroleum oil hydrocarbons to the surface. Usually some natural gas is released along with the oil. A well that is designed to produce only gas may be termed a gas well.

Boring (earth) drilling a hole, tunnel, or well in the earth; used for a various applications in geology, agriculture, hydrology, civil engineering, and mineral exploration

Boring is drilling a hole, tunnel, or well in the earth.

Earth Third planet from the Sun in the Solar System

Earth is the third planet from the Sun and the only astronomical object known to harbor life. According to radiometric dating and other sources of evidence, Earth formed over 4.5 billion years ago. Earth's gravity interacts with other objects in space, especially the Sun and the Moon, which is Earth's only natural satellite. Earth orbits around the Sun in 365.26 days, a period known as an Earth year. During this time, Earth rotates about its axis about 366.26 times.

Petroleum Naturally occurring hydrocarbon liquid found underground

Petroleum is a naturally occurring, yellowish-black liquid found in geological formations beneath the Earth's surface. It is commonly refined into various types of fuels. Components of petroleum are separated using a technique called fractional distillation, i.e. separation of a liquid mixture into fractions differing in boiling point by means of distillation, typically using a fractionating column.

Contents

History

an early oil field exploitation in Pennsylvania, around 1862 Earlyoilfield.jpg
an early oil field exploitation in Pennsylvania, around 1862

The earliest known oil wells that were drilled and extracted were in Ashoka Empire in India about 300 B.C. Evidences of deep oil well drilling are found in delta of Mahanadi river. These wells had depths of up to about 240 metres (790 ft) and were drilled using bits attached to bamboo poles. [1] The oil was burned to evaporate brine and produce salt. By the 10th century, extensive bamboo pipelines connected oil wells with salt springs. The ancient records of China and Japan are said to contain many allusions to the use of natural gas for lighting and heating. Petroleum was known as Burning water in Japan in the 7th century. [2]

Ashoka 3rd Emperor of the Maurya Dynasty, patron of Buddhism

Ashoka sometimes Ashoka the Great, was an Indian emperor of the Maurya Dynasty, who ruled almost all of the Indian subcontinent from c. 268 to 232 BCE. The grandson of the founder of the Maurya Dynasty, Chandragupta Maurya, Ashoka promoted the spread of Buddhism across ancient Asia. Considered by many to be one of India's greatest emperors, Ashoka expanded Chandragupta's empire to reign over a realm stretching from present-day Afghanistan in the west to Bangladesh in the east. It covered the entire Indian subcontinent except for parts of present-day Tamil Nadu, Karnataka and Kerala. The empire's capital was Pataliputra, with provincial capitals at Taxila and Ujjain.

Drill bit

Drill bits are cutting tools used to remove material to create holes, almost always of circular cross-section. Drill bits come in many sizes and shapes and can create different kinds of holes in many different materials. In order to create holes drill bits are usually attached to a drill, which powers them to cut through the workpiece, typically by rotation. The drill will grasp the upper end of a bit called the shank in the chuck.

Bamboo subfamily of plants

The bamboos are evergreen perennial flowering plants in the subfamily Bambusoideae of the grass family Poaceae. The word "bamboo" comes from the Dutch or Portuguese languages, which probably borrowed it from Malay.

According to Kasem Ajram, petroleum was distilled by the Persian alchemist Muhammad ibn Zakarīya Rāzi (Rhazes) in the 9th century, producing chemicals such as kerosene in the alembic (al-ambiq), [3] [ verification needed ] and which was mainly used for kerosene lamps. [4] Arab and Persian chemists also distilled crude oil in order to produce flammable products for military purposes. Through Islamic Spain, distillation became available in Western Europe by the 12th century. [2]

Distillation method of separating mixtures based on differences in volatility of components in a boiling liquid mixture

Distillation is the process of separating the components or substances from a liquid mixture by using selective boiling and condensation. Distillation may result in essentially complete separation, or it may be a partial separation that increases the concentration of selected components in the mixture. In either case, the process exploits differences in the relative volatility of the mixture's components. In industrial chemistry, distillation is a unit operation of practically universal importance, but it is a physical separation process, not a chemical reaction.

Kerosene, also known as paraffin, lamp oil, and coal oil, is a combustible hydrocarbon liquid which is derived from petroleum. It is widely used as a fuel in aviation as well as households. Its name derives from Greek: κηρός (keros) meaning wax, and was registered as a trademark by Canadian geologist and inventor Abraham Gesner in 1854 before evolving into a genericized trademark. It is sometimes spelled kerosine in scientific and industrial usage. The term kerosene is common in much of Argentina, Australia, Canada, India, New Zealand, and the United States, while the term paraffin is used in Chile, eastern Africa, South Africa, Norway, and in the United Kingdom. The term lamp oil, or the equivalent in the local languages, is common in the majority of Asia and "Earth Oil" in some parts of southern Asia. Liquid paraffin is a more viscous and highly refined product which is used as a laxative. Paraffin wax is a waxy solid extracted from petroleum.

An alembic ; Ancient Greek: ἄμβιξ is an alchemical still consisting of two vessels connected by a tube, used for distilling.

Some sources claim that from the 9th century, oil fields were exploited in the area around modern Baku, Azerbaijan, to produce naphtha for the petroleum industry. These places were described by Marco Polo in the 13th century, who described the output of those oil wells as hundreds of shiploads. When Marco Polo in 1264 visited Baku, on the shores of the Caspian Sea, he saw oil being collected from seeps. He wrote that "on the confines toward Geirgine there is a fountain from which oil springs in great abundance, in as much as a hundred shiploads might be taken from it at one time." [5]

Baku Place in Azerbaijan

Baku is the capital and largest city of Azerbaijan, as well as the largest city on the Caspian Sea and of the Caucasus region. Baku is located 28 metres (92 ft) below sea level, which makes it the lowest lying national capital in the world and also the largest city in the world located below sea level. Baku lies on the southern shore of the Absheron Peninsula, alongside the Bay of Baku. At the beginning of 2009, Baku's urban population was estimated at just over two million people. Officially, about 25 percent of all inhabitants of the country live in Baku's metropolitan area. Baku is the sole metropolis in Azerbaijan.

Azerbaijan Country in the South Caucasus

Azerbaijan, officially the Republic of Azerbaijan, is a country in the South Caucasus region of Eurasia at the crossroads of Eastern Europe and Western Asia. It is bounded by the Caspian Sea to the east, Russia to the north, Georgia to the northwest, Armenia to the west and Iran to the south. The exclave of Nakhchivan is bounded by Armenia to the north and east, Iran to the south and west, and has an 11 km (6.8 mi) long border with Turkey in the northwest.

Petroleum naphtha is an intermediate hydrocarbon liquid stream derived from the refining of crude oil with CAS-no 64742-48-9. It is most usually desulfurized and then catalytically reformed, which rearranges or restructures the hydrocarbon molecules in the naphtha as well as breaking some of the molecules into smaller molecules to produce a high-octane component of gasoline.

Galician oil wells Galicja1881.jpg
Galician oil wells
1904 oil well fire at Bibi-Heybat Oil well burning in Bibi Eibat.JPG
1904 oil well fire at Bibi-Heybat

In 1846, Baku (settlement Bibi-Heybat) the first ever well was drilled with percussion tools to a depth of 21 metres (69 ft) for oil exploration. In 1848, the first modern oil well was drilled on the Absheron Peninsula north-east of Baku, by Russian engineer F.N. Semyenov. [6]

Bibiheybət Municipality in Baku, Azerbaijan

Bibiheybət is a municipality in Baku, Azerbaijan. It has a population of 1,451.

Absheron Peninsula Place

The Absheron Peninsula is a peninsula in Azerbaijan. It is the location of Baku, the biggest and the most populous city of the country, and also the Baku metropolitan area, with its satellite cities Sumqayit and Khyrdalan.

Ignacy Łukasiewicz, a Polish [7] [8] pharmacist and petroleum industry pioneer built one of the world's first modern oil wells in 1854 in Polish village Bóbrka, Krosno County [9] who in 1856 built one of the world's first oil refineries. [10]

Ignacy Łukasiewicz Polish pharmacist and petroleum industry pioneer

Jan Józef Ignacy Łukasiewicz was a Polish pharmacist, engineer, businessman, inventor, and one of the most prominent philanthropists in the Kingdom of Galicia and Lodomeria, crown land of Austria-Hungary. He was a pioneer who in 1856 built the world's first modern oil refinery. His achievements included the discovery of how to distill kerosene from seep oil, the invention of the modern kerosene lamp (1853), the introduction of the first modern street lamp in Europe (1853), and the construction of the world's first modern oil well (1854).

Poles West Slavic nation native to Poland

The Poles, commonly referred to as the Polish people, are a nation and West Slavic ethnic group native to Poland in Central Europe who share a common ancestry, culture, history, and are native speakers of the Polish language. The population of self-declared Poles in Poland is estimated at 37,394,000 out of an overall population of 38,538,000, of whom 36,522,000 declared Polish alone.

Pharmacist healthcare professional who practices in pharmacy

Pharmacists, also known as chemists or druggists, are health professionals who practice in pharmacy, the field of health sciences focusing on safe and effective medication use. Pharmacists undergo university-level education to understand the biochemical mechanisms and actions of drugs, drug uses, therapeutic roles, side effects, potential drug interactions, and monitoring parameters. This is mated to anatomy, physiology, and pathophysiology. Pharmacists interpret and communicate this specialized knowledge to patients, physicians, and other health care providers.

In North America, the first commercial oil well entered operation in Oil Springs, Ontario in 1858, while the first offshore oil well was drilled in 1896 at the Summerland Oil Field on the California Coast.

The earliest oil wells in modern times were drilled percussively, by repeatedly raising and dropping a cable tool into the earth. In the 20th century, cable tools were largely replaced with rotary drilling, which could drill boreholes to much greater depths and in less time. The record-depth Kola Borehole used non-rotary mud motor drilling to achieve a depth of over 12,000 metres (39,000 ft).

Until the 1970s, most oil wells were vertical, although lithological and mechanical imperfections cause most wells to deviate at least slightly from true vertical. However, modern directional drilling technologies allow for strongly deviated wells which can, given sufficient depth and with the proper tools, actually become horizontal. This is of great value as the reservoir rocks which contain hydrocarbons are usually horizontal or nearly horizontal; a horizontal wellbore placed in a production zone has more surface area in the production zone than a vertical well, resulting in a higher production rate. The use of deviated and horizontal drilling has also made it possible to reach reservoirs several kilometers or miles away from the drilling location (extended reach drilling), allowing for the production of hydrocarbons located below locations that are either difficult to place a drilling rig on, environmentally sensitive, or populated.

Life of a well

Planning

Before a well is drilled, a geologic target is identified by a geologist or geophysicist to meet the objectives of the well.

The target (the end point of the well) will be matched with a surface location (the starting point of the well), and a trajectory between the two will be designed. There are many considerations to take into account when designing the trajectory such as the clearance to any nearby wells (anti-collision) or if this well will get in the way of future wells, trying to avoid faults if possible and certain formations may be easier/more difficult to drill at certain inclinations or azimuths.

When the well path is identified, a team of geoscientists and engineers will develop a set of presumed properties of the subsurface that will be drilled through to reach the target. These properties include pore pressure, fracture gradient, wellbore stability, porosity, permeability, lithology, faults, and clay content. This set of assumptions is used by a well engineering team to perform the casing design and completion design for the well, and then detailed planning, where, for example, the drill bits are selected, a BHA is designed, the drilling fluid is selected, and step-by-step procedures are written to provide instruction for executing the well in a safe and cost-efficient manner.

With the interplay with many of the elements in a well design and making a change to one will have a knock on effect on many other things, often trajectories and designs go through several iterations before a plan is finalised.

Drilling

An annotated schematic of an oil well during a drilling phase Well Diagram.png
An annotated schematic of an oil well during a drilling phase

The well is created by drilling a hole 12 cm to 1 meter (5 in to 40 in) in diameter into the earth with a drilling rig that rotates a drill string with a bit attached. After the hole is drilled, sections of steel pipe (casing), slightly smaller in diameter than the borehole, are placed in the hole. Cement may be placed between the outside of the casing and the borehole known as the annulus. The casing provides structural integrity to the newly drilled wellbore, in addition to isolating potentially dangerous high pressure zones from each other and from the surface.

With these zones safely isolated and the formation protected by the casing, the well can be drilled deeper (into potentially more-unstable and violent formations) with a smaller bit, and also cased with a smaller size casing. Modern wells often have two to five sets of subsequently smaller hole sizes drilled inside one another, each cemented with casing.

To drill the well
Well Casing Casing & Temporary Home.JPG
Well Casing
Mud log in process, a common way to study the lithology when drilling oil wells Mudlogging.JPG
Mud log in process, a common way to study the lithology when drilling oil wells

This process is all facilitated by a drilling rig which contains all necessary equipment to circulate the drilling fluid, hoist and turn the pipe, control downhole, remove cuttings from the drilling fluid, and generate on-site power for these operations.

Completion

Modern drilling rig in Argentina H104.jpg
Modern drilling rig in Argentina

After drilling and casing the well, it must be 'completed'. Completion is the process in which the well is enabled to produce oil or gas.

In a cased-hole completion, small holes called perforations are made in the portion of the casing which passed through the production zone, to provide a path for the oil to flow from the surrounding rock into the production tubing. In open hole completion, often 'sand screens' or a 'gravel pack' is installed in the last drilled, uncased reservoir section. These maintain structural integrity of the wellbore in the absence of casing, while still allowing flow from the reservoir into the wellbore. Screens also control the migration of formation sands into production tubulars and surface equipment, which can cause washouts and other problems, particularly from unconsolidated sand formations of offshore fields.

After a flow path is made, acids and fracturing fluids may be pumped into the well to fracture, clean, or otherwise prepare and stimulate the reservoir rock to optimally produce hydrocarbons into the wellbore. Finally, the area above the reservoir section of the well is packed off inside the casing, and connected to the surface via a smaller diameter pipe called tubing. This arrangement provides a redundant barrier to leaks of hydrocarbons as well as allowing damaged sections to be replaced. Also, the smaller cross-sectional area of the tubing produces reservoir fluids at an increased velocity in order to minimize liquid fallback that would create additional back pressure, and shields the casing from corrosive well fluids.

In many wells, the natural pressure of the subsurface reservoir is high enough for the oil or gas to flow to the surface. However, this is not always the case, especially in depleted fields where the pressures have been lowered by other producing wells, or in low permeability oil reservoirs. Installing a smaller diameter tubing may be enough to help the production, but artificial lift methods may also be needed. Common solutions include downhole pumps, gas lift, or surface pump jacks. Many new systems in the last ten years have been introduced for well completion. Multiple packer systems with frac ports or port collars in an all in one system have cut completion costs and improved production, especially in the case of horizontal wells. These new systems allow casings to run into the lateral zone with proper packer/frac port placement for optimal hydrocarbon recovery.

Production

A schematic of a typical oil well being produced by a pumpjack, which is used to produce the remaining recoverable oil after natural pressure is no longer sufficient to raise oil to the surface Pump Jack labelled.png
A schematic of a typical oil well being produced by a pumpjack, which is used to produce the remaining recoverable oil after natural pressure is no longer sufficient to raise oil to the surface

The production stage is the most important stage of a well's life; when the oil and gas are produced. By this time, the oil rigs and workover rigs used to drill and complete the well have moved off the wellbore, and the top is usually outfitted with a collection of valves called a Christmas tree or production tree. These valves regulate pressures, control flows, and allow access to the wellbore in case further completion work is needed. From the outlet valve of the production tree, the flow can be connected to a distribution network of pipelines and tanks to supply the product to refineries, natural gas compressor stations, or oil export terminals.

As long as the pressure in the reservoir remains high enough, the production tree is all that is required to produce the well. If the pressure depletes and it is considered economically viable, an artificial lift method mentioned in the completions section can be employed.

Workovers are often necessary in older wells, which may need smaller diameter tubing, scale or paraffin removal, acid matrix jobs, or completing new zones of interest in a shallower reservoir. Such remedial work can be performed using workover rigs – also known as pulling units, completion rigs or "service rigs" – to pull and replace tubing, or by the use of well intervention techniques utilizing coiled tubing. Depending on the type of lift system and wellhead a rod rig or flushby can be used to change a pump without pulling the tubing.

Enhanced recovery methods such as water flooding, steam flooding, or CO2 flooding may be used to increase reservoir pressure and provide a "sweep" effect to push hydrocarbons out of the reservoir. Such methods require the use of injection wells (often chosen from old production wells in a carefully determined pattern), and are used when facing problems with reservoir pressure depletion, high oil viscosity, or can even be employed early in a field's life. In certain cases – depending on the reservoir's geomechanics – reservoir engineers may determine that ultimate recoverable oil may be increased by applying a waterflooding strategy early in the field's development rather than later. Such enhanced recovery techniques are often called "tertiary recovery".

Abandonment

A well is said to reach an "economic limit" when its most efficient production rate does not cover the operating expenses, including taxes. [11]

The economic limit for oil and gas wells can be expressed using these formulae:

Oil fields:

Gas fields:

Where:
is an oil well's economic limit in oil barrels per month (bbls/month).
is a gas well's economic limit in thousand standard cubic feet per month (MSCF/month).
are the current prices of oil and gas in dollars per barrels and dollars per MSCF respectively.
is the lease operating expenses in dollars per well per month.
working interest, as a fraction. [12]
net revenue interest, as a fraction.
gas/oil ratio as SCF/bbl.
condensate yield as barrel/million standard cubic feet.
production and severance taxes, as a fraction.
[11]

When the economic limit is raised, the life of the well is shortened and proven oil reserves are lost. Conversely, when the economic limit is lowered, the life of the well is lengthened.

When the economic limit is reached, the well becomes a liability and is abandoned. Some abandoned wells are subsequently plugged and the site is reclaimed; however, the cost of such efforts can be in the millions of dollars. [13] In this process, tubing is removed from the well and sections of well bore are filled with concrete to isolate the flow path between gas and water zones from each other, as well as the surface. The surface around the wellhead is then excavated, and the wellhead and casing are cut off, a cap is welded in place and then buried.

At the economic limit there often is still a significant amount of unrecoverable oil left in the reservoir. It might be tempting to defer physical abandonment for an extended period of time, hoping that the oil price will go up or that new supplemental recovery techniques will be perfected. In these cases, temporary plugs will be placed downhole and locks attached to the wellhead to prevent tampering. There are thousands of "abandoned" wells throughout North America, waiting to see what the market will do before permanent abandonment. Often, lease provisions and governmental regulations usually require quick abandonment; liability and tax concerns also may favor abandonment. [14]

In theory an abandoned well can be reentered and restored to production (or converted to injection service for supplemental recovery or for downhole hydrocarbons storage), but reentry often proves to be difficult mechanically and expensive. Traditionally elastomer and cement plugs have been used with varying degrees of success and reliability. Over time, they may deteriorate, particularly in corrosive environments, due to the materials from which they are manufactured. Conventional bridge plugs also have very small expansion ratios, limiting them for use in wells with restrictions. Alternatively, high expansion plugs, such as inflatable packers, do not have the differential pressure capabilities required for many well abandonments, nor do they provide a gas-tight seal. New tools have been developed that make re-entry easier, these tools offer higher expansion rations than conventional bridge plugs and higher differential pressure ratings than inflatable packers, all while providing a V0 rated, gas tight seal that cement cannot provide. [15]

Types of wells

A natural gas well in the southeast Lost Hills Field, California, US. NaturalGasWell.jpg
A natural gas well in the southeast Lost Hills Field, California, US.
Raising the derrick Raising the stern.JPG
Raising the derrick
Oil extraction in Boryslav in 1909 Bundesarchiv Bild 183-R00740, Boryslaw, Erdolgewinnung.jpg
Oil extraction in Boryslav in 1909
Burning of natural gases at an oil drilling site, presumably at Pangkalan Brandan, East Coast of Sumatra - circa 1905 KITLV - 26871 - Kleingrothe, C.J. - Medan - Burning of natural gases at an oil drilling site, presumably at Pangkalan Brandan, East Coast of Sumatra - circa 1905.tif
Burning of natural gases at an oil drilling site, presumably at Pangkalan Brandan, East Coast of Sumatra - circa 1905

By produced fluid

Natural gas is almost always a byproduct of producing oil, since the small, light gas carbon chains come out of solution as they undergo pressure reduction from the reservoir to the surface, similar to uncapping a bottle of soda where the carbon dioxide effervesces. Unwanted natural gas can be a disposal problem at the well site. If it escapes into the atmosphere it becomes known as fugitive gas. If there is not a market for natural gas near the wellhead it is virtually valueless since it must be piped to the end user. Until recently, such unwanted gas was burned off at the wellsite, but due to environmental concerns this practice is becoming less common. [16] Often, unwanted (or 'stranded' gas without a market) gas is pumped back into the reservoir with an 'injection' well for disposal or repressurizing the producing formation. Another solution is to export the natural gas as a liquid. Gas to liquid (GTL) is a developing technology that converts stranded natural gas into synthetic gasoline, diesel or jet fuel through the Fischer-Tropsch process developed in World War II Germany. Such fuels can be transported through conventional pipelines and tankers to users. Proponents claim GTL fuels burn cleaner than comparable petroleum fuels. Most major international oil companies are in advanced development stages of GTL production, e.g. the 140,000 bbl/d (22,000 m3/d) Pearl GTL plant in Qatar, scheduled to come online in 2011. In locations such as the United States with a high natural gas demand, pipelines are constructed to take the gas from the wellsite to the end consumer.

By location

Wells can be located:

Offshore wells can further be subdivided into

While the location of the well will be a large factor in the type of equipment used to drill it, there is actually little difference in the well itself. An offshore well targets a reservoir that happens to be underneath an ocean. Due to logistics, drilling an offshore well is far more costly than an onshore well. By far the most common type is the onshore well. [17] These wells dot the Southern and Central Great Plains, Southwestern United States, and are the most common wells in the Middle East.

By purpose

Another way to classify oil wells is by their purpose in contributing to the development of a resource. They can be characterized as:

At a producing well site, active wells may be further categorised as:

Lahee classification

Cost

The cost of a well depends mainly on the daily rate of the drilling rig, the extra services required to drill the well, the duration of the well program (including downtime and weather time), and the remoteness of the location (logistic supply costs).

The daily rates of offshore drilling rigs vary by their capability, and the market availability. Rig rates reported by industry web service [18] show that the deepwater water floating drilling rigs are over twice that of the shallow water fleet, and rates for jackup fleet can vary by factor of 3 depending upon capability.

With deepwater drilling rig rates in 2015 of around $520,000/day, [18] and similar additional spread costs, a deep water well of duration of 100 days can cost around US$100 million.

With high performance jackup rig rates in 2015 of around $177,000, [18] and similar service costs, a high pressure, high temperature well of duration 100 days can cost about US$30 million.

Onshore wells can be considerably cheaper, particularly if the field is at a shallow depth, where costs range from less than $4.9 million to $8.3 million, and the average completion costing $ 2.9 million to $ 5.6 million per well. [19] Completion makes up a larger portion of onshore well costs than offshore wells, which have the added cost burden of an oil platform. [20]

The total cost of an oil well mentioned does not include the costs associated with the risk of explosion and leakage of oil. Those costs include the cost of protecting against such disasters, the cost of the cleanup effort, and the hard-to-calculate cost of damage to the company's image.

See also

Related Research Articles

Drilling rig

A drilling rig is an integrated system that drills wells, such as oil or water wells, in the earth's subsurface. Drilling rigs can be massive structures housing equipment used to drill water wells, oil wells, or natural gas extraction wells, or they can be small enough to be moved manually by one person and such are called augers. Drilling rigs can sample subsurface mineral deposits, test rock, soil and groundwater physical properties, and also can be used to install sub-surface fabrications, such as underground utilities, instrumentation, tunnels or wells. Drilling rigs can be mobile equipment mounted on trucks, tracks or trailers, or more permanent land or marine-based structures. The term "rig" therefore generally refers to the complex equipment that is used to penetrate the surface of the Earth's crust.

Well control is the technique used in oil and gas operations such as drilling, well workover and well completion for maintaining the hydrostatic pressure and formation pressure to prevent the influx of formation fluids into the wellbore. This technique involves the estimation of formation fluid pressures, the strength of the subsurface formations and the use of casing and mud density to offset those pressures in a predictable fashion. Understanding pressure and pressure relationships is important in well control.

Casing (borehole)

Casing is large diameter pipe that is assembled and inserted into a recently drilled section of a borehole. Similar to the bones of a spine protecting the spinal cord, casing is set inside the drilled borehole to protect and support the wellstream. The lower portion is typically held in place with cement. Deeper strings usually are not cemented all the way to the surface, so the weight of the pipe must be partially supported by a casing hanger in the wellhead.

Production tubing is a tube used in a wellbore through which production fluids are produced (travel).

Wellhead Component at the surface of a well that provides the structural and pressure-containing interface

A wellhead is the component at the surface of an oil or gas well that provides the structural and pressure-containing interface for the drilling and production equipment.

Drilling fluid Aid for drilling boreholes into the ground

In geotechnical engineering, drilling fluid, also called drilling mud, is used to aid the drilling of boreholes into the earth. Often used while drilling oil and natural gas wells and on exploration drilling rigs, drilling fluids are also used for much simpler boreholes, such as water wells. One of the functions of drilling mud is to carry cuttings out of the hole.

Blowout (well drilling) uncontrolled release of crude oil and/or natural gas from a well

A blowout is the uncontrolled release of crude oil and/or natural gas from an oil well or gas well after pressure control systems have failed. Modern wells have blowout preventers intended to prevent such an occurrence. An accidental spark during a blowout can lead to a catastrophic oil or gas fire.

Blowout preventer large, specialized valve or similar mechanical device, used to seal, control and monitor oil and gas wells to prevent blowout

A blowout preventer (BOP) is a large, specialized valve or similar mechanical device, used to seal, control and monitor oil and gas wells to prevent blowouts, the uncontrolled release of crude oil and/or natural gas from a well. They are usually installed in stacks of other valves.

Drill stem test

A drill stem test (DST) is a procedure for isolating and testing the pressure, permeability and productive capacity of a geological formation during the drilling of a well. The test is an important measurement of pressure behaviour at the drill stem and is a valuable way of obtaining information on the formation fluid and establishing whether a well has found a commercial hydrocarbon reservoir.

Underbalanced drilling, or UBD, is a procedure used to drill oil and gas wells where the pressure in the wellbore is kept lower than the static pressure then the formation being drilled. As the well is being drilled, formation fluid flows into the wellbore and up to the surface. This is the opposite of the usual situation, where the wellbore is kept at a pressure above the formation to prevent formation fluid entering the well. In such a conventional "overbalanced" well, the invasion of fluid is considered a kick, and if the well is not shut-in it can lead to a blowout, a dangerous situation. In underbalanced drilling, however, there is a "rotating head" at the surface - essentially a seal that diverts produced fluids to a separator while allowing the drill string to continue rotating.

Coiled tubing

In the oil and gas industries, coiled tubing refers to a very long metal pipe, normally 1 to 3.25 in in diameter which is supplied spooled on a large reel. It is used for interventions in oil and gas wells and sometimes as production tubing in depleted gas wells. Coiled tubing is often used to carry out operations similar to wirelining. The main benefits over wireline are the ability to pump chemicals through the coil and the ability to push it into the hole rather than relying on gravity. Pumping can be fairly self-contained, almost a closed system, since the tube is continuous instead of jointed pipe. For offshore operations, the 'footprint' for a coiled tubing operation is generally larger than a wireline spread, which can limit the number of installations where coiled tubing can be performed and make the operation more costly. A coiled tubing operation is normally performed through the drilling derrick on the oil platform, which is used to support the surface equipment, although on platforms with no drilling facilities a self-supporting tower can be used instead. For coiled tubing operations on sub-sea wells a mobile offshore drilling unit (MODU) e.g. semi-submersible, drillship etc. has to be utilized to support all the surface equipment and personnel, whereas wireline can be carried out from a smaller and cheaper intervention vessel. Onshore, they can be run using smaller service rigs, and for light operations a mobile self-contained coiled tubing rig can be used.

Well intervention

A well intervention, or well work, is any operation carried out on an oil or gas well during, or at the end of, its productive life that alters the state of the well or well geometry, provides well diagnostics, or manages the production of the well. SBS Energy Services is an example of a company that specializes in snubbing/workover and coil tubing well intervention.

A well kill is the operation of placing a column of heavy fluid into a well bore in order to prevent the flow of reservoir fluids without the need for pressure control equipment at the surface. It works on the principle that the hydrostatic head of the "kill fluid" or "kill mud" will be enough to suppress the pressure of the formation fluids. Well kills may be planned in the case of advanced interventions such as workovers, or be contingency operations. The situation calling for a well kill will dictate the method taken.

Completion (oil and gas wells) last operation for oil and gas wells

Well completion is the process of making a well ready for production after drilling operations. This principally involves preparing the bottom of the hole to the required specifications, running in the production tubing and its associated down hole tools as well as perforating and stimulating as required. Sometimes, the process of running in and cementing the casing is also included. After a well has been drilled, should the drilling fluids be removed, the well would eventually close in upon itself. Casing ensures that this will not happen while also protecting the wellstream from outside incumbents, like water or sand.

Well stimulation

Well stimulation is a well intervention performed on an oil or gas well to increase production by improving the flow of hydrocarbons from the reservoir into the well bore. It may be done using a well stimulator structure or using off shore ships / drilling vessels, also known as "Well stimulation vessels".

Oilfield terminology refers to the jargon used by those working in fields within and related to the upstream segment of the petroleum industry. It includes words and phrases describing professions, equipment, and procedures specific to the industry. It may also include slang terms used by oilfield workers to describe the same.

Oil well control is the management of the dangerous effects caused by the unexpected release of formation fluid, such as natural gas and/or crude oil, upon surface equipment of oil or gas drilling rigs and escaping into the atmosphere. Technically, oil well control involves preventing the formation fluid, usually referred to as kick, from entering into the wellbore during drilling.

Pipe recovery operations

Pipe recovery is a specific wireline operation used in the oil and gas industry, when the drill string becomes stuck downhole. Stuck pipe prevents the drill rig from continuing operations. This results in costly downtime, ranging anywhere from $10,000-1,000,000 per day of downtime, therefore it is critical to resolve the problem as quickly as possible. Pipe recovery is the process by which the location of the stuck pipe is identified, and the free pipe is separated from the stuck pipe. This allows fishing tools to subsequently be run down hole to latch onto and remove the stuck pipe.

References

  1. "ASTM International - Standards Worldwide". www.astm.org.
  2. 1 2 Joseph P. Riva Jr. and Gordon I. Atwater. "petroleum". Encyclopædia Britannica . Retrieved 2008-06-30.
  3. Dr. Kasem Ajram (1992). The Miracle of Islam Science (2nd ed.). Knowledge House Publishers. ISBN   0-911119-43-4.
  4. Zayn Bilkadi (University of California, Berkeley), "The Oil Weapons", Saudi Aramco World , January–February 1995, pp. 20–7
  5. Steil, Tim. Fantastic Filling Stations. Voyageur Press. p. 18. ISBN   9781610606295.
  6. "History of the Oil Industry". www.sjvgeology.org.
  7. Magdalena Puda-Blokesz, Ignacy Łukasiewicz: ojciec światowego przemysłu naftowego, działacz polityczny i patriota, filantrop i społecznik, przede wszystkim CZŁOWIEK Archived 2014-10-27 at the Wayback Machine
  8. Ludwik Tomanek, Ignacy Łukasiewicz twórca przemysłu naftowego w Polsce, wielki inicjator - wielki jałmużnik. — Miejsce Piastowe: Komitet Uczczenia Pamięci Ignacego Łukasiewicza — 1928
  9. Warsaw University timeline Archived 2007-05-19 at the Wayback Machine
  10. Frank, Alison Fleig (2005). Oil Empire: Visions of Prosperity in Austrian Galicia (Harvard Historical Studies). Harvard University Press. ISBN   0-674-01887-7.
  11. 1 2 Mohammed A. Mian, Petroleum Engineering Handbook for the Practicing Engineer, Tulsa, Okla.: PennWell, 1992, p.447.
  12. "working interest - Schlumberger Oilfield Glossary". www.glossary.oilfield.slb.com.
  13. Bloom, Matt (6 September 2019). "Cleaning Up Abandoned Wells Proves Costly To Gas And Oil Producing States" (Audio). All Things Considered. National Public Radio. Retrieved 4 November 2019.
  14. Frosch, Dan; Gold, Russell (26 February 2015). "How 'Orphan' Wells Leave States Holding the Cleanup Bag". Wall Street Journal. Retrieved 26 February 2015.
  15. "Rigless Well Abandonment for the Oil & Gas Industry".
  16. Emam, Eman A. (December 2015). "GAS FLARING IN INDUSTRY: AN OVERVIEW" (PDF). large.stanford.edu/.
  17. "Crude Oil and Natural Gas Drilling Activity". Energy Information Administration. U.S. Energy Information Administration. 21 May 2019. Retrieved 4 November 2019.
  18. 1 2 3 Rigzone - Rig day rates : http://www.rigzone.com/data/dayrates/
  19. "Trends in U.S. Oil and Natural Gas Upstream Costs" (PDF). Energy Information Administration. U.S. Energy Information Administration. 2016. Retrieved 4 November 2019.
  20. "The Cost of Oil & Gas Wells". OilScams.org. Oil Scams. 2018. Retrieved 4 November 2019.