Drill cuttings

Last updated
Drill cuttings - Annotated - 2004.jpg

Drill cuttings [1] are broken bits of solid material removed from a borehole drilled by rotary, percussion, or auger methods and brought to the surface in the drilling mud. Boreholes drilled in this way include oil or gas wells, water wells, and holes drilled for geotechnical investigations or mineral exploration. [2]

Contents

The drill cuttings are commonly examined to make a record (a well log) of the subsurface materials penetrated at various depths. In the oil industry, this is often called a mud log.

Drill cuttings are produced as the rock is broken by the drill bit advancing through the rock or soil; the cuttings are usually carried to the surface by drilling fluid circulating up from the drill bit. Drill cuttings can be separated from liquid drilling fluid by shale shakers, by centrifuges, or by cyclone separators, the latter also being effective for air drilling. In cable-tool drilling, the drill cuttings are periodically bailed out of the bottom of the hole. In auger drilling, cuttings are carried to the surface on the auger flights.

One drilling method that does not produce drill cuttings is core drilling, which instead produces solid cylinders of rock or soil.

Management of drill cuttings

Drill cuttings carried by mud (drilling fluid) are usually retrieved at the surface of the platform where they go through shakers or vibrating machines to separate the cuttings from the drilling fluid, this process allows the circulating fluid to re-enter the drilling process.

Samples from the cuttings are then studied by mud loggers and wellsite geologist. In the oil and gas industry the operator will likely require a set of samples for further analysis in their labs. Many national regulations stipulate that for any well drilled, a set of samples must be archived with a national body. For example, in the case of the UK with the British Geological Survey (BGS).

The bulk of the cuttings require disposal. The methodology for disposal is dependent on the type of drilling fluid used. For water based drilling fluid (WBM) with no particular dangerous additives, the cuttings can be dumped overboard (in offshore scenario). If however an oil based drilling fluid (OBM) is used then the cuttings must be processed before disposal. Either in skips and transported to a dedicated facility (aka skip and ship), or now there are mobile plants that can process them at the rigsite burning off the drilling fluid contamination. This saves the logistics and cost of transporting such quantities of cuttings. Although possibly thought of as an uninteresting topic, if in a skip and ship scenario, the dependency on crane operations to move skips can lead to situations whereby bad weather halts drilling as the cuttings handling cannot continue.

Disposal as waste

Burial

Burial is the placement of waste in man-made or natural excavations, such as pits or landfills. Burial is the most common onshore disposal technique used for disposing of drilling wastes (mud and cuttings). Generally, the solids are buried in the same pit (the reserve pit) used for collection and temporary storage of the waste mud and cuttings after the liquid is allowed to evaporate. Pit burial is a low-cost, low-tech method that does not require wastes to be transported away from the well site, and, therefore, is very attractive to many operators.

Burial may be the most misunderstood or misapplied disposal technique. Simply pushing the walls of the reserve pit over the drilled cuttings is generally not acceptable. The depth or placement of the burial cell is important. A moisture content limit should be established on the buried cuttings, and the chemical composition should be determined. Onsite pit burial may not be a good choice for wastes that contain high concentrations of oil, salt, biologically available metals, industrial chemicals, and other materials with harmful components that could migrate from the pit and contaminate usable water resources.

In some oil field areas, large landfills are operated to dispose of oil field wastes from multiple wells. Burial usually results in anaerobic conditions, which limits any further degradation when compared with wastes that are land-farmed or land-spread, where aerobic conditions predominate. [3]

Application to land surfaces

The objective of applying drilling wastes to the land is to allow the soil's naturally occurring microbial population to metabolize, transform, and assimilate waste constituents in place. Land application is a form of bioremediation are described in a separate fact sheet. [4]

Several terms are used to describe this waste management approach, which can be considered both treatment and disposal. In general, land farming refers to the repeated application of wastes to the soil surface, whereas land spreading and land treatment are often used interchangeably to describe the one-time application of wastes to the soil surface. Some practitioners do not follow the same terminology convention, and may interchange all three terms. Readers should focus on the technologies rather than on the specific names given to each process.

Optimal land application techniques balance the additions of waste against a soil's capacity to assimilate the waste constituents without destroying soil integrity, creating subsurface soil contamination problems, or causing other adverse environmental impacts.

Land farming

The exploration and production industry has used land farming to treat oily petroleum industry wastes for years. Land farming is the controlled and repeated application of wastes to the soil surface, using microorganisms in the soil to naturally biodegrade hydrocarbon constituents, dilute and attenuate metals, and transform and assimilate waste constituents.

Land farming can be a relatively low-cost drilling waste management approach. Some studies indicate that land farming does not adversely affect soils and may even benefit certain sandy soils by increasing their water-retaining capacity and reducing fertilizer losses. Inorganic compounds and metals are diluted in the soil, and may also be incorporated into the matrix (through chelation, exchange reactions, covalent bonding, or other processes) or may become less soluble through oxidation, precipitation, and pH effects. The attenuation of heavy metals (or the taking up of metals by plants) can depend on clay content and cation-exchange capacity.

Optimizing Land Farm Operations: The addition of water, nutrients, and other amendments (e.g., manure, straw) can increase the biological activity and aeration of the soil, thereby preventing the development of conditions that might promote leaching and mobilization of inorganic contaminants. During periods of extended dry conditions, moisture control may also be needed to minimize dust.

Periodic tillage of the mixture (to increase aeration) and nutrient additions to the waste-soil mixture can enhance aerobic biodegradation of hydrocarbons. After applying the wastes, hydrocarbon concentrations are monitored to measure progress and determine the need for enhancing the biodegradation processes. Application rates should be controlled to minimize the potential for runoff.

Pretreating the wastes by composting and activating aerobic biodegradation by regular turning (windrows) or by forced ventilation (biopiles) can reduce the amount of acreage required for land farming (Morillon et al. 2002).

Drilling Waste Land Farm Example: In 1995, HS Resources, an oil and gas company operating in Colorado, obtained a permit for a noncommercial land farm to treat and recycle the company's nonhazardous oil field wastes, including drilling muds. At the land farm, wastes mixed with soil contaminated with hydrocarbons from other facilities are spread in a layer one foot thick or less. Natural bacterial action is enhanced through occasional addition of commercial fertilizers, monthly tilling (to add oxygen), and watering (to maintain 10–15% moisture content). Treatment is considered complete when hydrocarbon levels reach concentrations specified by regulatory agencies; not all agencies employ the same acceptability standards. Water and soil are monitored periodically to confirm that no adverse soil or groundwater impacts have occurred, and records of the source and disposition of the remediated soil are maintained. Estimated treatment costs, which include transportation, spreading, amendments, and monitoring, are about $4–5 per cubic yard. When the treated material is recycled as backfill, net costs are about $1 per cubic yard. Capital costs (not included in the treatment cost estimates) were recovered within the first eight months of operation (Cole and Mark 2000).

Implementation Considerations: Advantages of land farming include its simplicity and low capital cost, the ability to apply multiple waste loadings to the same parcel of land, and the potential to improve soil conditions. Concerns associated with land farming are its high maintenance costs (e.g., for periodic land tilling, fertilizer); potentially large land requirements; and required analysis, testing, demonstration, and monitoring. Elevated concentrations of hydrocarbon in drilling wastes can limit the application rate of a waste on a site.

Wastes containing salt must also be applied to soil only with care. Salt, unlike hydrocarbons, cannot biodegrade but may accumulate in soils, which have a limited capacity to accept salts. If salt levels become too high, the soils may be damaged and treatment of hydrocarbons can be inhibited. Salts are soluble in water and can be managed. Salt management is part of prudent operation of a land farm.

Another concern with land farming is that while lower molecularweight petroleum compounds biodegrade efficiently, higher molecular weight compounds biodegrade more slowly. This means that repeated applications can lead to accumulation of high molecular weight compounds. At high concentrations, these recalcitrant constituents can increase soil-water repellency, affect plant growth, reduce the ability of the soil to support a diverse community of organisms, and render the land farm no longer usable without treatment or amendment. [5] Recent studies have supported the idea that field-scale additions of earthworms with selected organic amendments may hasten the long-term recovery of conventionally treated petroleum contaminated soil. The burrowing and feeding activities of earthworms create space and allow food resources to become available to other soil organisms that would be unable to survive otherwise. The use of earthworms in Europe has improved the biological quality of soils of some large-scale land-reclamation projects.

When considering land farming as a waste management option, several items should be considered. These include site topography, site hydrology, neighboring land use, and the physical (texture and bulk density) and chemical composition of the waste and the resulting waste-soil mixture. Wastes that contain large amounts of oil and various additives may have diverse effects on parts of the food chain. Constituents of particular concern include pH, nitrogen (total mass), major soluble ions (Ca, Mg, Na, Cl), electrical conductivity, total metals, extractable organic halogens, oil content, and hydrocarbons. Oil-based muds typically utilize an emulsified phase of 20 to 35 percent by weight CaCl2 brine. This salt can be a problem in some areas, such as some parts of Canada, the mid-continent, and the Rocky Mountains. For this reason, alternative mud systems have emerged that use an environmentally preferred beneficial salt, such as calcium nitrate or potassium sulfate, as the emulsified internal water phase.

Wastes that contain significant levels of biologically available heavy metals and persistent toxic compounds are not good candidates for land farming, as these substances can accumulate in the soil to a level that renders the land unfit for further use (E&P Forum 1993). (Site monitoring can help ensure such accumulation does not occur.) Land farms may require permits or other approvals from regulatory agencies, and, depending on soil conditions, some land farms may require liners and/or groundwater monitoring wells.

Land treatment

In land treatment (also known as land spreading), the processes are similar to those in land farming, where natural soil processes are used to biodegrade the organic constituents in the waste. However, in land treatment, a one-time application of the waste is made to a parcel of land. The objective is to dispose of the waste in a manner that preserves the subsoil's chemical, biological, and physical properties by limiting the accumulation of contaminants and protecting the quality of surface and groundwater. The land spreading area is determined on the basis of a calculated loading rate that considers the absolute salt concentration, hydrocarbon concentration, metals concentration, and pH level after mixing with the soil. The drilling waste is spread on the land and incorporated into the upper soil zone (typically upper 6–8 inches of soil) to enhance hydrocarbon volatization and biodegradation. The land is managed so that the soil system can degrade, transport, and assimilate the waste constituents. Each land treatment site is generally used only once.

Optimizing Land Treatment Operations: Addition of water, nutrients, and other amendments (e.g., manure, straw) can increase the biological activity/aeration of the soil and prevent the development of conditions that might promote leaching and mobilization of inorganic contaminants. During periods of extended dry conditions, moisture control may also be needed to minimize dust. Periodic tillage of the mixture (to increase aeration) and nutrient additions to the waste soil mixture can enhance aerobic biodegradation of hydrocarbons, although in practice not all land treatment projects include repeated tilling. After applying the wastes, hydrocarbon concentrations may be monitored to measure progress and determine the need for enhancing the biodegradation processes.

Implementation Considerations: Because land spreading sites receive only a single application of waste, the potential for accumulation of waste components in the soil is reduced (as compared with land farming, where waste is applied repeatedly). Although liners and monitoring of leachate are typically not required at land treatment sites, site topography, hydrology, and the physical and chemical composition of the waste and resultant waste-soil mixture should be assessed, with waste application rates controlled to minimize the possibility of runoff.

Experiments conducted in France showed that after spreading oil-based mud cuttings on farmland, followed by plowing, tilling, and fertilizing, approximately 10% of the initial quantity of the oil remained in the soil. Phytotoxic effects on seed germination and sprouting were not observed, but corn and wheat crop yields decreased by 10%. [6] Yields of other crops were not affected. The percentage of hydrocarbon reduction and crop yield performance will vary from site to site depending on many factors (e.g., length of time after application, type of hydrocarbon, soil chemistry, temperature).

Land spreading costs are typically $2.50 to $3.00 per barrel of water-based drilling fluids not contaminated with oil, and they could be higher for oily wastes containing salts (Bansal and Sugiarto 1999). Costs also depend on sampling and analytical requirements.

Advantages of land spreading are the low treatment cost and the possibility that the approach could improve soil characteristics. Land spreading is most effectively used for drilling wastes that have low levels of hydrocarbons and salts. Potential concerns include the need for large land areas; the relatively slow degradation process (the rate of biodegradation is controlled by the inherent biodegradation properties of the waste constituents, soil temperature, soil-water content, and contact between the microorganisms and the wastes); and the need for analyses, tests, and demonstrations. Also, high concentrations of soluble salts or metals can limit the use of land spreading.

When evaluating land spreading as a drilling waste management option, several items should be considered. These include area-wide topographical and geological features; current and likely future activities around the disposal site; hydrogeologic data (location, size, and direction of flow for existing surface water bodies and fresh or usable aquifers); natural or existing drainage patterns; nearby environmentally sensitive features such as wetlands, urban areas, historical or archeological sites, and protected habitats; the presence of endangered species; and potential air quality impacts. In addition, historical rainfall distribution data should be reviewed to establish moisture requirements for land spreading and predict net evaporation rates. Devices needed to control water flow into, onto, or from facility systems should be identified. Wastes should be characterized during the evaluation; drilling wastes with high levels of hydrocarbons and salts may not be appropriate for land spreading.

Recycling

Some cuttings can be beneficially reused. Before the cuttings can be reused or recycled, it may be necessary to follow steps to ensure the hydrocarbon and chloride content are lowered to within the standards for reuse of appropriate governing bodies.

Reuse of cuttings through road spreading is permitted in some areas. To do this may require permission from both appropriate governing agencies as well as land owners.

Drill cuttings can also be recycled for use as bulk particulate solid construction materials such as road base for site roads and pads. The cuttings must first be screened and dried, before being processed in a pugmill or similar mixing method. [3] [7] Drilling waste can also be recycled in mixes for other large, substantially monolithic specialized concrete structures.

Related Research Articles

Catagenesis is a term used in petroleum geology to describe the cracking process which results in the conversion of organic kerogens into hydrocarbons.

<span class="mw-page-title-main">Oil well</span> Well drilled to extract crude oil and/or gas

An oil well is a drillhole boring in Earth that is designed to bring petroleum oil hydrocarbons to the surface. Usually some natural gas is released as associated petroleum gas along with the oil. A well that is designed to produce only gas may be termed a gas well. Wells are created by drilling down into an oil or gas reserve that is then mounted with an extraction device such as a pumpjack which allows extraction from the reserve. Creating the wells can be an expensive process, costing at least hundreds of thousands of dollars, and costing much more when in hard to reach areas, e.g., when creating offshore oil platforms. The process of modern drilling for wells first started in the 19th century, but was made more efficient with advances to oil drilling rigs during the 20th century.

<span class="mw-page-title-main">Environmental remediation</span> Removal of pollution from soil, groundwater etc.

Environmental remediation is the cleanup of hazardous substances dealing with the removal, treatment and containment of pollution or contaminants from environmental media such as soil, groundwater, sediment. Remediation may be required by regulations before development of land revitalization projects. Developers who agree to voluntary cleanup may be offered incentives under state or municipal programs like New York State's Brownfield Cleanup Program. If remediation is done by removal the waste materials are simply transported off-site for disposal at another location. The waste material can also be contained by physical barriers like slurry walls. The use of slurry walls is well-established in the construction industry. The application of (low) pressure grouting, used to mitigate soil liquefaction risks in San Francisco and other earthquake zones, has achieved mixed results in field tests to create barriers, and site-specific results depend upon many variable conditions that can greatly impact outcomes.

<span class="mw-page-title-main">Bioremediation</span> Process used to treat contaminated media such as water and soil

Bioremediation broadly refers to any process wherein a biological system, living or dead, is employed for removing environmental pollutants from air, water, soil, flue gasses, industrial effluents etc., in natural or artificial settings. The natural ability of organisms to adsorb, accumulate, and degrade common and emerging pollutants has attracted the use of biological resources in treatment of contaminated environment. In comparison to conventional physicochemical treatment methods bioremediation may offer considerable advantages as it aims to be sustainable, eco-friendly, cheap, and scalable.

Biological augmentation is the addition of archaea or bacterial cultures required to speed up the rate of degradation of a contaminant. Organisms that originate from contaminated areas may already be able to break down waste, but perhaps inefficiently and slowly.

<span class="mw-page-title-main">Agricultural wastewater treatment</span> Farm management for controlling pollution from confined animal operations and surface runoff

Agricultural wastewater treatment is a farm management agenda for controlling pollution from confined animal operations and from surface runoff that may be contaminated by chemicals in fertilizer, pesticides, animal slurry, crop residues or irrigation water. Agricultural wastewater treatment is required for continuous confined animal operations like milk and egg production. It may be performed in plants using mechanized treatment units similar to those used for industrial wastewater. Where land is available for ponds, settling basins and facultative lagoons may have lower operational costs for seasonal use conditions from breeding or harvest cycles. Animal slurries are usually treated by containment in anaerobic lagoons before disposal by spray or trickle application to grassland. Constructed wetlands are sometimes used to facilitate treatment of animal wastes.

<span class="mw-page-title-main">Industrial wastewater treatment</span> Processes used for treating wastewater that is produced by industries as an undesirable by-product

Industrial wastewater treatment describes the processes used for treating wastewater that is produced by industries as an undesirable by-product. After treatment, the treated industrial wastewater may be reused or released to a sanitary sewer or to a surface water in the environment. Some industrial facilities generate wastewater that can be treated in sewage treatment plants. Most industrial processes, such as petroleum refineries, chemical and petrochemical plants have their own specialized facilities to treat their wastewaters so that the pollutant concentrations in the treated wastewater comply with the regulations regarding disposal of wastewaters into sewers or into rivers, lakes or oceans. This applies to industries that generate wastewater with high concentrations of organic matter, toxic pollutants or nutrients such as ammonia. Some industries install a pre-treatment system to remove some pollutants, and then discharge the partially treated wastewater to the municipal sewer system.

A mud engineer works on an oil well or gas well drilling rig, and is responsible for ensuring the properties of the drilling fluid, also known as drilling mud, are within designed specifications.

<span class="mw-page-title-main">Drilling fluid</span> Aid for drilling boreholes into the ground

In geotechnical engineering, drilling fluid, also known as drilling mud, is used to aid the drilling of boreholes into the earth. Used while drilling oil and natural gas wells and on exploration drilling rigs, drilling fluids are also used for much simpler boreholes, such as water wells.

<span class="mw-page-title-main">Mud logging</span> Creation of a detailed record of a borehole

Mud logging is the creation of a detailed record of a borehole by examining the cuttings of rock brought to the surface by the circulating drilling medium. Mud logging is usually performed by a third-party mud logging company. This provides well owners and producers with information about the lithology and fluid content of the borehole while drilling. Historically it is the earliest type of well log. Under some circumstances compressed air is employed as a circulating fluid, rather than mud. Although most commonly used in petroleum exploration, mud logging is also sometimes used when drilling water wells and in other mineral exploration, where drilling fluid is the circulating medium used to lift cuttings out of the hole. In hydrocarbon exploration, hydrocarbon surface gas detectors record the level of natural gas brought up in the mud. A mobile laboratory is situated by the mud logging company near the drilling rig or on deck of an offshore drilling rig, or on a drill ship.

Landfarming is an ex situ waste treatment process that is performed in the upper soil zone or in biotreatment cells. Contaminated soils, sediments, or sludges are transported to the landfarming site, mixed into the soil surface and periodically turned over (tilled) to aerate the mixture. Landfarming commonly uses a clay or composite liner to intercept leaching contaminants and prevent groundwater pollution, however, a liner is not a universal requirement.

Spontaneous potential log, commonly called the self potential log or SP log, is a passive measurement taken by oil industry well loggers to characterise rock formation properties. The log works by measuring small electric potentials between depths with in the borehole and a grounded electrode at the surface. Conductive bore hole fluids are necessary to create a SP response, so the SP log cannot be used in nonconductive drilling muds or air filled holes.

For environmental remediation, Low-temperature thermal desorption (LTTD), also known as low-temperature thermal volatilization, thermal stripping, and soil roasting, is an ex-situ remedial technology that uses heat to physically separate petroleum hydrocarbons from excavated soils. Thermal desorbers are designed to heat soils to temperatures sufficient to cause constituents to volatilize and desorb from the soil. Although they are not designed to decompose organic constituents, thermal desorbers can, depending upon the specific organics present and the temperature of the desorber system, cause some organic constituents to completely or partially decompose. The vaporized hydrocarbons are generally treated in a secondary treatment unit prior to discharge to the atmosphere. Afterburners and oxidizers destroy the organic constituents. Condensers and carbon adsorption units trap organic compounds for subsequent treatment or disposal.

Groundwater remediation is the process that is used to treat polluted groundwater by removing the pollutants or converting them into harmless products. Groundwater is water present below the ground surface that saturates the pore space in the subsurface. Globally, between 25 per cent and 40 per cent of the world's drinking water is drawn from boreholes and dug wells. Groundwater is also used by farmers to irrigate crops and by industries to produce everyday goods. Most groundwater is clean, but groundwater can become polluted, or contaminated as a result of human activities or as a result of natural conditions.

<span class="mw-page-title-main">Mud systems</span>

Effective solids control can be attributed to the overall performance of all the components of the mud systems. Conditioning the drilling fluid with the goal of dramatically lowering maintenance cost, avoiding excessive chemical treatment and maintaining mud systems volume will decrease the chance of equipment failure, unnecessary high mud costs, hole and drilling problems.

<span class="mw-page-title-main">Solids control</span>

Solids control is a process used in drilling rigs which use drilling fluid. It involves separating the "cuttings" from the fluid, allowing it to be recirculated or discharged to the environment.

<span class="mw-page-title-main">The Waste Disposal Inc. Superfund site</span> Waste disposal

The Waste Disposal Inc. Superfund site is an oil-related contaminated site in the highly industrialized city of Santa Fe Springs in Los Angeles County, California. It is approximately 38 acres (15 ha), with St Paul's high school immediately adjacent to the northeast corner of the site. Approximately 15,000 residents of Santa Fe Springs obtain drinking water from wells within three miles (4.8 km) of the site.

Petroleum microbiology is a branch of microbiology that deals with the study of microorganisms that can metabolize or alter crude or refined petroleum products. These microorganisms, also called hydrocarbonoclastic microorganisms, can degrade hydrocarbons and, include a wide distribution of bacteria, methanogenic archaea, and some fungi. Not all hydrocarbonoclasic microbes depend on hydrocarbons to survive, but instead may use petroleum products as alternative carbon and energy sources. Interest in this field is growing due to the increasing use of bioremediation of oil spills.

<span class="mw-page-title-main">Groundwater pollution</span> Ground released seep into groundwater

Groundwater pollution occurs when pollutants are released to the ground and make their way into groundwater. This type of water pollution can also occur naturally due to the presence of a minor and unwanted constituent, contaminant, or impurity in the groundwater, in which case it is more likely referred to as contamination rather than pollution. Groundwater pollution can occur from on-site sanitation systems, landfill leachate, effluent from wastewater treatment plants, leaking sewers, petrol filling stations, hydraulic fracturing (fracking) or from over application of fertilizers in agriculture. Pollution can also occur from naturally occurring contaminants, such as arsenic or fluoride. Using polluted groundwater causes hazards to public health through poisoning or the spread of disease.

Bioremediation of petroleum contaminated environments is a process in which the biological pathways within microorganisms or plants are used to degrade or sequester toxic hydrocarbons, heavy metals, and other volatile organic compounds found within fossil fuels. Oil spills happen frequently at varying degrees along with all aspects of the petroleum supply chain, presenting a complex array of issues for both environmental and public health. While traditional cleanup methods such as chemical or manual containment and removal often result in rapid results, bioremediation is less labor-intensive, expensive, and averts chemical or mechanical damage. The efficiency and effectiveness of bioremediation efforts are based on maintaining ideal conditions, such as pH, RED-OX potential, temperature, moisture, oxygen abundance, nutrient availability, soil composition, and pollutant structure, for the desired organism or biological pathway to facilitate reactions. Three main types of bioremediation used for petroleum spills include microbial remediation, phytoremediation, and mycoremediation. Bioremediation has been implemented in various notable oil spills including the 1989 Exxon Valdez incident where the application of fertilizer on affected shoreline increased rates of biodegradation.

References

PD-icon.svg This article incorporates public domain material from websites or documents of the United States Department of Energy .

  1. http://www.glossary.oilfield.slb.com/Display.cfm?Term=cuttings Archived 2012-05-31 at the Wayback Machine Schlumberger: Oilfield Glossary
  2. Gordon, E. D.; Withington, Charles Francis; Dow, V. T. (1953). Practices and Results Obtained with Sample Collectors for Wagon-drill Cuttings. U.S. Department of the Interior, Geological Survey.
  3. 1 2 "Drilling Waste Management Fact Sheet: Onsite Burial (Pits, Landfills)". Archived from the original on 2004-11-08.
  4. Read "In Situ Bioremediation: When Does it Work?" at NAP.edu. 1993. doi:10.17226/2131. ISBN   978-0-309-04896-5. S2CID   106682180.
  5. Callahan et al. 2002
  6. Smith et al. 1999
  7. "Archived copy" (PDF). Archived from the original (PDF) on 2012-05-11. Retrieved 2012-04-26.{{cite web}}: CS1 maint: archived copy as title (link)