Names | |
---|---|
Other names Kalksalpeter, Norgessalpeter, nitrocalcite, Norwegian salpeter, lime nitrate | |
Identifiers | |
| |
3D model (JSmol) | |
ChEBI | |
ChEMBL | |
ChemSpider | |
ECHA InfoCard | 100.030.289 |
EC Number |
|
PubChem CID | |
RTECS number |
|
UNII |
|
UN number | 1454 |
CompTox Dashboard (EPA) | |
| |
| |
Properties | |
Ca(NO3)2 | |
Molar mass | 164.088 g/mol (anhydrous) 236.15 g/mol (tetrahydrate) |
Appearance | colorless solid hygroscopic |
Density | 2.504 g/cm3 (anhydrous) 1.896 g/cm3 (tetrahydrate) |
Melting point | 561 °C (1,042 °F; 834 K) (anhydrous) 42.7 °C (109 °F; 316 K) (tetrahydrate) |
Boiling point | decomposes (anhydrous) 132 °C (270 °F; 405 K) (tetrahydrate) |
anhydrous: 1212 g/L (20 °C) 2710 g/L (40 °C) tetrahydrate: 1050 g/L (0 °C) 1290 g/L (20 °C) 3630 g/L (100 °C) | |
Solubility | soluble in ammonia almost insoluble in nitric acid |
Solubility in ethanol | 51.4 g/100 g (20 °C) 62.9 g/100 g (40 °C) [1] |
Solubility in methanol | 134 g/100 g (10 °C) 144 g/100 g (40 °C) 158 g/100 g (60 °C) [1] |
Solubility in acetone | 33.08 g/100g (anhydrous, 25 °C) [2] |
Acidity (pKa) | 6.0 |
-45.9·10−6 cm3/mol | |
Structure | |
cubic (anhydrous) monoclinic (tetrahydrate) | |
Hazards | |
GHS labelling: | |
Danger | |
H272, H302, H315, H319 | |
P210, P220, P221, P264, P270, P280, P301+P312, P302+P352, P305+P351+P338, P310, P321, P330, P332+P313, P337+P313, P362, P370+P378, P501 | |
NFPA 704 (fire diamond) | |
Flash point | Non-flammable |
Lethal dose or concentration (LD, LC): | |
LD50 (median dose) | 302 mg/kg (rat, oral) |
Safety data sheet (SDS) | ICSC 1037 |
Related compounds | |
Other anions | Calcium sulfate Calcium chloride |
Other cations | Magnesium nitrate Strontium nitrate Barium nitrate |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). |
Calcium nitrate are inorganic compounds with the formula Ca(NO3)2(H2O)x. The anhydrous compound, which is rarely encountered, absorbs moisture from the air to give the tetrahydrate. Both anhydrous and hydrated forms are colourless salts. Hydrated calcium nitrate, also called Norgessalpeter (Norwegian salpeter), is mainly used as a component in fertilizers, but it has other applications. Nitrocalcite is the name for a mineral which is a hydrated calcium nitrate that forms as an efflorescence where manure contacts concrete or limestone in a dry environment as in stables or caverns. A variety of related salts are known including calcium ammonium nitrate decahydrate and calcium potassium nitrate decahydrate. [3]
Norgessalpeter was synthesized at Notodden, Norway in 1905 by the Birkeland–Eyde process. Most of the world's calcium nitrate is now made in Porsgrunn. It is produced by treating limestone with nitric acid, followed by neutralization with ammonia:
It is also an intermediate product of the Odda Process:
It can also be prepared from an aqueous solution of ammonium nitrate, and calcium hydroxide:
Like related alkaline earth metal nitrates, calcium nitrate decomposes upon heating (starting at 500 °C) to release nitrogen dioxide: [3]
The fertilizer grade (15.5-0-0 + 19% Ca) is popular in the greenhouse and hydroponics trades; it contains ammonium nitrate and water, as the "double salt" 5Ca(NO3)2·NH4NO3·10H2O. This is called calcium ammonium nitrate and often the name calcium nitrate prill is used as it always comes in a prilled (granular) form. Formulations lacking ammonia are also known: Ca(NO3)2·4H2O (11.9-0-0 + 16.9 Ca) and the water-free 17-0-0 + 23.6 Ca. A liquid formulation (9-0-0 + 11 Ca) is also offered. An anhydrous, air-stable derivative is the urea complex Ca(NO3)2·4[OC(NH2)2], which has been sold as Cal-Urea.
Calcium nitrate is also used to control certain plant diseases. For example, dilute calcium nitrate (and calcium chloride) sprays are used to control bitter pit and cork spot in apple trees. [4]
Calcium nitrate is used in waste water pre-conditioning for odour emission prevention. The waste water pre-conditioning is based on establishing an anoxic biology in the waste water system. In the presence of nitrate, the metabolism for sulfates stops, thus preventing formation of hydrogen sulfide. [5] Additionally, easily degradable organic matter is consumed, which otherwise can cause anaerobic conditions downstream as well as odour emissions itself. The concept is also applicable for surplus sludge treatment. [6]
Calcium nitrate is used in set accelerating concrete admixtures. This use with concrete and mortar is based on two effects. The calcium ion accelerates formation of calcium hydroxide and thus precipitation and setting. This effect is used also in cold weather concreting agents as well as some combined plasticizers. [7] The nitrate ion leads to formation of iron hydroxide, whose protective layer reduces corrosion of the concrete reinforcement. [8]
Calcium nitrate is a very common coagulant in latex production, especially in dipping processes. Dissolved calcium nitrate is a part of the dipping bath solution. The warm former is dipped into the coagulation liquid and a thin film of the dipping liquid remains on the former. When now dipping the former into the latex the calcium nitrate will break up the stabilization of the latex solution and the latex will coagulate on the former. [9] [10]
The dissolution of calcium nitrate tetrahydrate is highly endothermic (cooling). For this reason, calcium nitrate tetrahydrate is sometimes used for regenerable cold packs. [3]
Calcium nitrate can be used as a part of molten salt mixtures. Typical are binary mixtures of calcium nitrate and potassium nitrate or ternary mixtures including also sodium nitrate. [11] [12] [13] Those molten salts can be used to replace thermo oil in concentrated solar power plants for the heat transfer, but mostly those are used in heat storage.
Sodium hydroxide, also known as lye and caustic soda, is an inorganic compound with the formula NaOH. It is a white solid ionic compound consisting of sodium cations Na+ and hydroxide anions OH−.
Ammonium nitrate is a chemical compound with the formula NH4NO3. It is a white crystalline salt consisting of ions of ammonium and nitrate. It is highly soluble in water and hygroscopic as a solid, although it does not form hydrates. It is predominantly used in agriculture as a high-nitrogen fertilizer.
Sodium carbonate is the inorganic compound with the formula Na2CO3 and its various hydrates. All forms are white, odourless, water-soluble salts that yield alkaline solutions in water. Historically, it was extracted from the ashes of plants grown in sodium-rich soils, and because the ashes of these sodium-rich plants were noticeably different from ashes of wood, sodium carbonate became known as "soda ash". It is produced in large quantities from sodium chloride and limestone by the Solvay process, as well as by carbonating sodium hydroxide which is made using the Chlor-alkali process.
The nitrophosphate process is a method for the industrial production of nitrogen fertilizers invented by Erling Johnson in the municipality of Odda, Norway around 1927.
Sodium sulfate (also known as sodium sulphate or sulfate of soda) is the inorganic compound with formula Na2SO4 as well as several related hydrates. All forms are white solids that are highly soluble in water. With an annual production of 6 million tonnes, the decahydrate is a major commodity chemical product. It is mainly used as a filler in the manufacture of powdered home laundry detergents and in the Kraft process of paper pulping for making highly alkaline sulfides.
Lithium nitrate is an inorganic compound with the formula LiNO3. It is the lithium salt of nitric acid (an alkali metal nitrate). The salt is deliquescent, absorbing water to form the hydrated form, lithium nitrate trihydrate. Its eutectics are of interest for heat transfer fluids.
In chemistry, water(s) of crystallization or water(s) of hydration are water molecules that are present inside crystals. Water is often incorporated in the formation of crystals from aqueous solutions. In some contexts, water of crystallization is the total mass of water in a substance at a given temperature and is mostly present in a definite (stoichiometric) ratio. Classically, "water of crystallization" refers to water that is found in the crystalline framework of a metal complex or a salt, which is not directly bonded to the metal cation.
Magnesium nitrate refers to inorganic compounds with the formula Mg(NO3)2(H2O)x, where x = 6, 2, and 0. All are white solids. The anhydrous material is hygroscopic, quickly forming the hexahydrate upon standing in air. All of the salts are very soluble in both water and ethanol.
Mercury(II) nitrate is an inorganic compound with the chemical formula Hg(NO3)2. It is the mercury(II) salt of nitric acid HNO3. It contains mercury(II) cations Hg2+ and nitrate anions NO−3, and water of crystallization H2O in the case of a hydrous salt. Mercury(II) nitrate forms hydrates Hg(NO3)2·xH2O. Anhydrous and hydrous salts are colorless or white soluble crystalline solids that are occasionally used as a reagents. Mercury(II) nitrate is made by treating mercury with hot concentrated nitric acid. Neither anhydrous nor monohydrate has been confirmed by X-ray crystallography. The anhydrous material is more widely used.
Zinc nitrate is an inorganic chemical compound with the formula Zn(NO3)2. This colorless, crystalline salt is highly deliquescent. It is typically encountered as a hexahydrate Zn(NO3)2·6H2O. It is soluble in both water and alcohol.
Cadmium nitrate describes any of the related members of a family of inorganic compounds with the general formula Cd(NO3)2·xH2O. The most commonly encountered form being the tetrahydrate.The anhydrous form is volatile, but the others are colourless crystalline solids that are deliquescent, tending to absorb enough moisture from the air to form an aqueous solution. Like other cadmium compounds, cadmium nitrate is known to be carcinogenic. According to X-ray crystallography, the tetrahydrate features octahedral Cd2+ centers bound to six oxygen ligands.
Iron(III) nitrate, or ferric nitrate, is the name used for a series of inorganic compounds with the formula Fe(NO3)3.(H2O)n. Most common is the nonahydrate Fe(NO3)3.(H2O)9. The hydrates are all pale colored, water-soluble paramagnetic salts.
Nickel nitrate is the inorganic compound Ni(NO3)2 or any hydrate thereof. In the hexahydrate, the nitrate anions are not bonded to nickel. Other hydrates have also been reported: Ni(NO3)2.9H2O, Ni(NO3)2.4H2O, and Ni(NO3)2.2H2O.
Cobalt nitrate is the inorganic compound with the formula Co(NO3)2.xH2O. It is cobalt(II)'s salt. The most common form is the hexahydrate Co(NO3)2·6H2O, which is a red-brown deliquescent salt that is soluble in water and other polar solvents.
Manganese(II) nitrate refers to the inorganic compounds with formula Mn(NO3)2·(H2O)n. These compounds are nitrate salts containing varying amounts of water. A common derivative is the tetrahydrate, Mn(NO3)2·4H2O, but mono- and hexahydrates are also known as well as the anhydrous compound. Some of these compounds are useful precursors to the oxides of manganese. Typical of a manganese(II) compound, it is a paramagnetic pale pink solid.
Calcium ammonium nitrate or CAN, also known as nitro-limestone or nitrochalk, is a widely used inorganic fertilizer, accounting for 4% of all nitrogen fertilizer used worldwide in 2007.
Cerium nitrate refers to a family of nitrates of cerium in the +3 or +4 oxidation state. Often these compounds contain water, hydroxide, or hydronium ions in addition to cerium and nitrate. Double nitrates of cerium also exist.
Zirconium nitrate is a volatile anhydrous transition metal nitrate salt of zirconium with formula Zr(NO3)4. It has alternate names of zirconium tetranitrate, or zirconium(IV) nitrate.
Thorium(IV) nitrate is a chemical compound, a salt of thorium and nitric acid with the formula Th(NO3)4. A white solid in its anhydrous form, it can form tetra- and pentahydrates. As a salt of thorium it is weakly radioactive.
Indium(III) nitrate is a nitrate salt of indium which forms various hydrates. Only the pentahydrate has been crystallographically verified. Other hydrates are also reported in literature, such as the trihydrate.
{{cite journal}}
: CS1 maint: date and year (link)