Names | |
---|---|
Other names Barium dinitrate, barium salt | |
Identifiers | |
3D model (JSmol) | |
ChEBI | |
ChEMBL | |
ChemSpider | |
ECHA InfoCard | 100.030.006 |
EC Number |
|
PubChem CID | |
RTECS number |
|
UNII | |
UN number | 1446 |
CompTox Dashboard (EPA) | |
| |
| |
Properties | |
Ba(NO3)2 | |
Molar mass | 261.337 g/mol |
Appearance | white, lustrous crystals |
Odor | odorless |
Density | 3.24 g/cm3 |
Melting point | 592 °C (1,098 °F; 865 K) (decomposes) |
4.95 g/100 mL (0 °C) 10.5 g/100 mL (25 °C) 34.4 g/100 mL (100 °C) | |
Solubility | slightly soluble in acetone, and ethanol [1] |
-66.5·10−6 cm3/mol | |
Refractive index (nD) | 1.5659 |
Structure | |
cubic | |
Hazards | |
GHS labelling: | |
Danger | |
H272, H301, H302, H319, H332 | |
P210, P220, P221, P261, P264, P270, P271, P280, P301+P310, P301+P312, P304+P312, P304+P340, P305+P351+P338, P312, P321, P330, P337+P313, P370+P378, P405, P501 | |
NFPA 704 (fire diamond) | |
Flash point | noncombustible [2] |
Lethal dose or concentration (LD, LC): | |
LD50 (median dose) | 355 mg/kg (oral, rat)[ citation needed ] 187 mg/kg (rat, oral) [3] |
LDLo (lowest published) | 79 mg Ba/kg (rabbit, oral) 421 mg Ba/kg (dog, oral) [3] |
NIOSH (US health exposure limits): | |
PEL (Permissible) | TWA 0.5 mg/m3 [2] |
REL (Recommended) | TWA 0.5 mg/m3 [2] |
IDLH (Immediate danger) | 50 mg/m3 [2] |
Supplementary data page | |
Barium nitrate (data page) | |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). |
Barium nitrate is the inorganic compound with the chemical formula Ba(NO3)2. It, like most barium salts, is colorless, toxic, and water-soluble. It burns with a green flame and is an oxidizer; the compound is commonly used in pyrotechnics. [4]
Barium nitrate is manufactured by two processes that start with the main source material for barium, the carbonate. The first involves dissolving barium carbonate in nitric acid, allowing any iron impurities to precipitate, then filtered, evaporated, and crystallized. The second requires combining barium sulfide with nitric acid. [4]
It occurs naturally as the very rare mineral nitrobarite. [5] [6]
At elevated temperatures, barium nitrate decomposes to barium oxide:
Barium nitrate is used in the production of BaO-containing materials.
Although no longer produced, Baratol is an explosive composed of barium nitrate, TNT and binder; the high density of barium nitrate results in baratol being quite dense as well. Barium nitrate mixed with aluminium powder, a formula for flash powder, is highly explosive. It is mixed with thermite to form Thermate-TH3, used in military thermite grenades. Barium nitrate was also a primary ingredient in the "SR 365" incendiary charge used by the British in the De Wilde incendiary ammunition with which they armed their interceptor fighters, such as the Hawker Hurricane and Supermarine Spitfire, during the Battle of Britain. [7] It is also used in the manufacturing process of barium oxide, the vacuum tube industry and for green fire in pyrotechnics.
Like all soluble barium compounds, barium nitrate is toxic by ingestion or inhalation. [8]
Solutions of sulfate salts such as Epsom salts or sodium sulfate may be given as first aid for barium poisoning, as they precipitate the barium as the insoluble (and non-toxic) barium sulfate.
Inhalation may also cause irritation to the respiratory tract.
While skin or eye contact is less harmful than ingestion or inhalation, it can still result in irritation, itching, redness, and pain.
The Occupational Safety and Health Administration and the National Institute for Occupational Safety and Health have set occupational exposure limits at 0.5 mg/m3 over an eight-hour time-weighted average. [9]
Silver nitrate is an inorganic compound with chemical formula AgNO
3. It is a versatile precursor to many other silver compounds, such as those used in photography. It is far less sensitive to light than the halides. It was once called lunar caustic because silver was called luna by ancient alchemists who associated silver with the moon. In solid silver nitrate, the silver ions are three-coordinated in a trigonal planar arrangement.
Lead(II) nitrate is an inorganic compound with the chemical formula Pb(NO3)2. It commonly occurs as a colourless crystal or white powder and, unlike most other lead(II) salts, is soluble in water.
Lead(II) sulfate (PbSO4) is a white solid, which appears white in microcrystalline form. It is also known as fast white, milk white, sulfuric acid lead salt or anglesite.
Barium sulfate (or sulphate) is the inorganic compound with the chemical formula BaSO4. It is a white crystalline solid that is odorless and insoluble in water. It occurs in nature as the mineral barite, which is the main commercial source of barium and materials prepared from it. Its opaque white appearance and its high density are exploited in its main applications.
Barium oxide, also known as baria, is a white hygroscopic non-flammable compound with the formula BaO. It has a cubic structure and is used in cathode ray tubes, crown glass, and catalysts. It is harmful to human skin and if swallowed in large quantity causes irritation. Excessive quantities of barium oxide may lead to death.
Barium carbonate is the inorganic compound with the formula BaCO3. Like most alkaline earth metal carbonates, it is a white salt that is poorly soluble in water. It occurs as the mineral known as witherite. In a commercial sense, it is one of the most important barium compounds.
Barium chloride is an inorganic compound with the formula BaCl2. It is one of the most common water-soluble salts of barium. Like most other water-soluble barium salts, it is a white powder, highly toxic, and imparts a yellow-green coloration to a flame. It is also hygroscopic, converting to the dihydrate BaCl2·2H2O, which are colourless crystals with a bitter salty taste. It has limited use in the laboratory and industry.
Copper(II) oxide or cupric oxide is an inorganic compound with the formula CuO. A black solid, it is one of the two stable oxides of copper, the other being Cu2O or copper(I) oxide (cuprous oxide). As a mineral, it is known as tenorite. It is a product of copper mining and the precursor to many other copper-containing products and chemical compounds.
Uranyl nitrate is a water-soluble yellow uranium salt with the formula UO2(NO3)2 · n H2O. The hexa-, tri-, and dihydrates are known. The compound is mainly of interest because it is an intermediate in the preparation of nuclear fuels. In the nuclear industry, it is commonly referred to as yellow salt.
Cadmium fluoride (CdF2) is a mostly water-insoluble source of cadmium used in oxygen-sensitive applications, such as the production of metallic alloys. In extremely low concentrations (ppm), this and other fluoride compounds are used in limited medical treatment protocols. Fluoride compounds also have significant uses in synthetic organic chemistry. The standard enthalpy has been found to be -167.39 kcal. mole−1 and the Gibbs energy of formation has been found to be -155.4 kcal. mole−1, and the heat of sublimation was determined to be 76 kcal. mole−1.
Aluminium nitrate is a white, water-soluble salt of aluminium and nitric acid, most commonly existing as the crystalline hydrate, aluminium nitrate nonahydrate, Al(NO3)3·9H2O.
Cadmium nitrate describes any of the related members of a family of inorganic compounds with the general formula Cd(NO3)2·xH2O. The most commonly encountered form being the tetrahydrate.The anhydrous form is volatile, but the others are colourless crystalline solids that are deliquescent, tending to absorb enough moisture from the air to form an aqueous solution. Like other cadmium compounds, cadmium nitrate is known to be carcinogenic. According to X-ray crystallography, the tetrahydrate features octahedral Cd2+ centers bound to six oxygen ligands.
Iron(III) nitrate, or ferric nitrate, is the name used for a series of inorganic compounds with the formula Fe(NO3)3.(H2O)n. Most common is the nonahydrate Fe(NO3)3.(H2O)9. The hydrates are all pale colored, water-soluble paramagnetic salts.
Strontium carbonate (SrCO3) is the carbonate salt of strontium that has the appearance of a white or grey powder. It occurs in nature as the mineral strontianite.
Barium chlorate, Ba(ClO3)2, is the barium salt of chloric acid. It is a white crystalline solid, and like all soluble barium compounds, irritant and toxic. It is sometimes used in pyrotechnics to produce a green color. It also finds use in the production of chloric acid.
Dinitro-ortho-cresol (DNOC) is an organic compound with the structural formula CH3C6H2(NO2)2OH. It is a yellow solid that is only slightly soluble in water. It is extremely toxic to humans and was previously used as a herbicide and insecticide.
Actinide chemistry is one of the main branches of nuclear chemistry that investigates the processes and molecular systems of the actinides. The actinides derive their name from the group 3 element actinium. The informal chemical symbol An is used in general discussions of actinide chemistry to refer to any actinide. All but one of the actinides are f-block elements, corresponding to the filling of the 5f electron shell; lawrencium, a d-block element, is also generally considered an actinide. In comparison with the lanthanides, also mostly f-block elements, the actinides show much more variable valence. The actinide series encompasses the 15 metallic chemical elements with atomic numbers from 89 to 103, actinium through lawrencium.
Iron(II) nitrate is the nitrate salt of iron(II). It is commonly encountered as the green hexahydrate, Fe(NO3)2·6H2O, which is a metal aquo complex, however it is not commercially available unlike iron(III) nitrate due to its instability to air. The salt is soluble in water serves as a ready source of ferrous ions.
Radium nitrate is a radioactive salt with the formula Ra(NO3)2. It is a white solid, but old samples appear yellowish-grey. Although radium chloride and radium bromide are less soluble than the corresponding barium salts, radium nitrate is more soluble than barium nitrate. It decomposes at 280 °C to radium oxide.
Radium compounds are compounds containing the element radium (Ra). Due to radium's radioactivity, not many compounds have been well characterized. Solid radium compounds are white as radium ions provide no specific coloring, but they gradually turn yellow and then dark over time due to self-radiolysis from radium's alpha decay. Insoluble radium compounds coprecipitate with all barium, most strontium, and most lead compounds.
The B. Mk VI 'De Wilde' incendiary (named after the original Belgian inventor but in fact completely redesigned by Major Dixon), which contained 0.5 grams of SR 365 (a composition including barium nitrate which ignited on impact with the target) was twice as effective as these, scoring one in five.