Barium sulfite

Last updated
Barium sulfite
Barium sulfite.svg
Names
IUPAC name
Barium sulfite
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.029.193 OOjs UI icon edit-ltr-progressive.svg
PubChem CID
UNII
  • InChI=1S/Ba.H2O3S/c;1-4(2)3/h;(H2,1,2,3)/q+2;/p-2 Yes check.svgY
    Key: ARSLNKYOPNUFFY-UHFFFAOYSA-L Yes check.svgY
  • InChI=1/Ba.H2O3S/c;1-4(2)3/h;(H2,1,2,3)/q+2;/p-2
    Key: ARSLNKYOPNUFFY-NUQVWONBAA
  • [Ba+2].[O-]S([O-])=O
Properties
BaSO3
Molar mass 217.391 g/mol
Appearancewhite monoclinic crystals
Density 4.44 g/cm3
Melting point decomposes
0.0011 g/100 mL
Solubility insoluble in ethanol [1]
Related compounds
Other anions
Barium sulfate
Barium fluoride
Barium chloride
Barium bromide
Barium iodide
Other cations
Calcium sulfite
Magnesium sulfite
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

Barium sulfite is the inorganic compound with the chemical formula BaSO3. It is a white powder that finds few applications. It is an intermediate in the carbothermal reduction of barium sulfate to barium sulfide: [2]

BaSO4 + CO → BaSO3 + CO2

Related Research Articles

<span class="mw-page-title-main">Barium</span> Chemical element, symbol Ba and atomic number 56

Barium is a chemical element; it has symbol Ba and atomic number 56. It is the fifth element in group 2 and is a soft, silvery alkaline earth metal. Because of its high chemical reactivity, barium is never found in nature as a free element.

<span class="mw-page-title-main">Oxide</span> Chemical compound where oxygen atoms are combined with atoms of other elements

An oxide is a chemical compound containing at least one oxygen atom and one other element in its chemical formula. "Oxide" itself is the dianion of oxygen, an O2– ion with oxygen in the oxidation state of −2. Most of the Earth's crust consists of oxides. Even materials considered pure elements often develop an oxide coating. For example, aluminium foil develops a thin skin of Al2O3 that protects the foil from further oxidation.

Sulfur trioxide (alternative spelling sulphur trioxide, also known as nisso sulfan) is the chemical compound with the formula SO3. It has been described as "unquestionably the most [economically important]" sulfur oxide. It is prepared on an industrial scale as a precursor to sulfuric acid.

<span class="mw-page-title-main">Barium hydroxide</span> Chemical compound

Barium hydroxide is a chemical compound with the chemical formula Ba(OH)2. The monohydrate (x = 1), known as baryta or baryta-water, is one of the principal compounds of barium. This white granular monohydrate is the usual commercial form.

<span class="mw-page-title-main">Barium sulfate</span> Inorganic chemical compound

Barium sulfate (or sulphate) is the inorganic compound with the chemical formula BaSO4. It is a white crystalline solid that is odorless and insoluble in water. It occurs as the mineral barite, which is the main commercial source of barium and materials prepared from it. Its opaque white appearance and its high density are exploited in its main applications.

Calcium fluoride is the inorganic compound of the elements calcium and fluorine with the formula CaF2. It is a white solid that is practically insoluble in water. It occurs as the mineral fluorite (also called fluorspar), which is often deeply coloured owing to impurities.

<span class="mw-page-title-main">Barium carbonate</span> Chemical compound

Barium carbonate is the inorganic compound with the formula BaCO3. Like most alkaline earth metal carbonates, it is a white salt that is poorly soluble in water. It occurs as the mineral known as witherite. In a commercial sense, it is one of the most important barium compounds.

<span class="mw-page-title-main">Barium chloride</span> Chemical compound

Barium chloride is an inorganic compound with the formula BaCl2. It is one of the most common water-soluble salts of barium. Like most other water-soluble barium salts, it is a white powder, highly toxic, and imparts a yellow-green coloration to a flame. It is also hygroscopic, converting to the dihydrate BaCl2·2H2O, which are colourless crystals with a bitter salty taste. It has limited use in the laboratory and industry.

<span class="mw-page-title-main">Barium nitrate</span> Chemical compound

Barium nitrate is the inorganic compound with the chemical formula Ba(NO3)2. It, like most barium salts, is colorless, toxic, and water-soluble. It burns with a green flame and is an oxidizer; the compound is commonly used in pyrotechnics.

<span class="mw-page-title-main">Sulfonic acid</span> Organic compounds with the structure R−S(=O)2−OH

In organic chemistry, sulfonic acid refers to a member of the class of organosulfur compounds with the general formula R−S(=O)2−OH, where R is an organic alkyl or aryl group and the S(=O)2(OH) group a sulfonyl hydroxide. As a substituent, it is known as a sulfo group. A sulfonic acid can be thought of as sulfuric acid with one hydroxyl group replaced by an organic substituent. The parent compound is the parent sulfonic acid, HS(=O)2(OH), a tautomer of sulfurous acid, S(=O)(OH)2. Salts or esters of sulfonic acids are called sulfonates.

<span class="mw-page-title-main">Cyclopentanone</span> Chemical compound

Cyclopentanone is the organic compound with the formula (CH2)4CO. This cyclic ketone is a colorless volatile liquid.

<span class="mw-page-title-main">Oligodynamic effect</span> Toxic effect of metal ions on living cells

The oligodynamic effect is a biocidal effect of metals, especially heavy metals, that occurs even in low concentrations. This effect is attributed to the antibacterial behavior of metal ions, which are absorbed by bacteria upon contact and damage their cell membranes.

<span class="mw-page-title-main">Potassium manganate</span> Chemical compound

Potassium manganate is the inorganic compound with the formula K2MnO4. This green-colored salt is an intermediate in the industrial synthesis of potassium permanganate, a common chemical. Occasionally, potassium manganate and potassium permanganate are confused, but each compound's properties are distinct.

Sulfation is the chemical reaction that entails the addition of SO3 group. In principle, many sulfations would involve reactions of sulfur trioxide (SO3). In practice, most sulfations are effected less directly. Regardless of the mechanism, the installation of a sulfate-like group on a substrate leads to substantial changes.

<span class="mw-page-title-main">Barium sulfide</span> Chemical compound

Barium sulfide is the inorganic compound with the formula BaS. BaS is the barium compound produced on the largest scale. It is an important precursor to other barium compounds including BaCO3 and the pigment lithopone, ZnS/BaSO4. Like other chalcogenides of the alkaline earth metals, BaS is a short wavelength emitter for electronic displays. It is colorless, although like many sulfides, it is commonly obtained in impure colored forms.

<span class="mw-page-title-main">Barium peroxide</span> Chemical compound

Barium peroxide is an inorganic compound with the formula BaO2. This white solid is one of the most common inorganic peroxides, and it was the first peroxide compound discovered. Being an oxidizer and giving a vivid green colour upon ignition, it finds some use in fireworks; historically, it was also used as a precursor for hydrogen peroxide.

<span class="mw-page-title-main">Dithionic acid</span> Chemical compound

Dithionic acid, H2S2O6, is a chemical compound known only in solution.

Sodium pyrosulfate is an inorganic compound with the chemical formula of Na2S2O7. It is a colorless salt. It hydrolyses in water to form sodium bisulfate with a chemical formula of NaHSO4 which has a pH of around 1.

<span class="mw-page-title-main">Metal peroxide</span>

Metal peroxides are metal-containing compounds with ionically- or covalently-bonded peroxide (O2−
2
) groups. This large family of compounds can be divided into ionic and covalent peroxide. The first class mostly contains the peroxides of the alkali and alkaline earth metals whereas the covalent peroxides are represented by such compounds as hydrogen peroxide and peroxymonosulfuric acid (H2SO5). In contrast to the purely ionic character of alkali metal peroxides, peroxides of transition metals have a more covalent character.

References

  1. Lide, David R. (1998), Handbook of Chemistry and Physics (87 ed.), Boca Raton, Florida: CRC Press, pp. 4–45, ISBN   0-8493-0594-2
  2. Kresse, Robert; Baudis, Ulrich; Jäger, Paul; Riechers, H. Hermann; Wagner, Heinz; Winkler, Jochen; Wolf, Hans Uwe (2007). "Ullmann's Encyclopedia of Industrial Chemistry". Ullmann's Encyclopedia of Industrial Chemistry . Weinheim: Wiley-VCH. doi:10.1002/14356007.a03_325.pub2. ISBN   978-3527306732.