Barium perchlorate

Last updated
Barium perchlorate
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.033.359 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 236-710-4
PubChem CID
RTECS number
  • SC7550000
UNII
  • InChI=1S/Ba.2ClHO4/c;2*2-1(3,4)5/h;2*(H,2,3,4,5)/q+2;;/p-2
    Key: OOULUYZFLXDWDQ-UHFFFAOYSA-L
  • [O-]Cl(=O)(=O)=O.[O-]Cl(=O)(=O)=O.[Ba+2]
Properties
Ba(ClO4)2
Molar mass 336.228 g/mol
Appearancewhite powder
Density 3.2 g/cm3
Melting point 505 °C (941 °F; 778 K)
66.48 g/100 mL (25 °C)
Hazards
NFPA 704 (fire diamond)
NFPA 704.svgHealth 3: Short exposure could cause serious temporary or residual injury. E.g. chlorine gasFlammability 0: Will not burn. E.g. waterInstability 1: Normally stable, but can become unstable at elevated temperatures and pressures. E.g. calciumSpecial hazard OX: Oxidizer. E.g. potassium perchlorate
3
0
1
OX
Related compounds
Other anions
Barium chlorate
Barium chloride
Other cations
Magnesium perchlorate
Strontium perchlorate
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Barium perchlorate is a powerful oxidizing agent, with the formula Ba(ClO4)2. It is used in the pyrotechnic industry.

Contents

Barium perchlorate decomposes at 505 °C. [1]

Structure of barium perchlorate trihydrate

Gallucci and Gerkin (1988) analyzed the structure of the hydrate isomer barium perchlorate trihydrate (Ba(ClO4)2•3H2O) by X-ray crystallography. The barium ions are coordinated by six water oxygen atoms at 2.919Å and six perchlorate oxygens at 3.026Å in a distorted icosahedral arrangement. The perchlorate fails by a narrow margin to have regular tetrahedral geometry, and has an average Cl-O bond length of 1.433Å. The space-group assignment of the structure was resolved, with the centrosymmetric assignment of P63/m confirmed. Each axial perchlorate oxygen is hydrogen bonded to three water molecules and each trigonal oxygen is hydrogen bonded to two water molecules. This interaction is the reason that the perchlorate fails to be tetrahedral. Gallucci and Gerkin surmised that the water molecule H atoms lie in the plane at z = 14 and 34. [2]

Preparation

Barium perchlorate can be prepared using many different reagents and methods. One method involves evaporating a solution containing barium chloride and an excess of perchloric acid. The dihydrate form is produced by recrystallizing and drying to a constant weight. Additional drying over sulfuric acid yields the monohydrate. The anhydrous form is obtained by heating to 140 °C in vacuum. [3] Dehydration of barium perchlorate that does not occur in vacuum will also result in hydrolysis of the perchlorate. [4] Other reactions that produce barium perchlorate are as follows: perchloric acid and barium hydroxide or carbonate; potassium perchlorate and hydrofluosilicic acid followed with barium carbonate; boiling solution of potassium chlorate and zinc fluosilicate. For large-scale manufacturing purposes, barium perchlorate is synthesized by evaporating a solution of sodium perchlorate and barium chloride. [3] Another method of preparation involves the digestion of a saturated solution of ammonium perchlorate with hydrated barium hydroxide in 5-10% excess of the theoretical amount. [5]

Applications

Due to its characteristic as a powerful oxidation agent, one of barium perchlorate’s primary uses is in the manufacture and preparation of explosive emulsions and other explosive compounds. [6] Using an emulsifier makes the process of transporting and handling of the explosive material while still retaining its destructive properties at the end point of use. Perchlorate explosives were mainly used in industrial applications, such as mining during the 1920s. [3]

Barium perchlorate is also able to complex with the quinolone antibacterial agents ciprofloxacin and norfloxacin. [7] FTIR data suggests that CIP and NOR act as bidentate ligands, using the ring carbonyl oxygen and an oxygen of the carboxylic group. This coordination is significant because it increases the solubility of the antibiotics in water and other polar solvents, increasing their uptake efficiency.

Because of its high solubility in water, anhydrous barium perchlorate can be used as a dehydrating reagent for other compounds. [3] Due to its high solubility, ease of preparation, low cost, stability at high temperatures, and relatively ease of regeneration, barium perchlorate is a favored compound for dehydrating compounds. The need for dehydrating compounds has increased with the use of chemical reactions employing gases under pressure, as the water must be removed from the air prior to the reaction taking place. [8]

Barium perchlorate is also used for the determination of small concentrations (down to 10 ppm, with an accuracy of +/- 1 ppm) of sulfate. [5] In order for the titration to be successful, a high concentration of a nonaqueous solvent, such as ethyl alcohol, 2-propanol, or methanol, must be present. Thorin is typically used as the indicator.

Related Research Articles

<span class="mw-page-title-main">Perchloric acid</span> Chemical compound

Perchloric acid is a mineral acid with the formula HClO4. Usually found as an aqueous solution, this colorless compound is a stronger acid than sulfuric acid, nitric acid and hydrochloric acid. It is a powerful oxidizer when hot, but aqueous solutions up to approximately 70% by weight at room temperature are generally safe, only showing strong acid features and no oxidizing properties. Perchloric acid is useful for preparing perchlorate salts, especially ammonium perchlorate, an important rocket fuel component. Perchloric acid is dangerously corrosive and readily forms potentially explosive mixtures.

<span class="mw-page-title-main">Potassium chlorate</span> Chemical compound

Potassium chlorate is a compound containing potassium, chlorine and oxygen, with the molecular formula KClO3. In its pure form, it is a white crystalline substance. After sodium chlorate, it is the second most common chlorate in industrial use. It is a strong oxidizing agent and its most important application is in safety matches. In other applications it is mostly obsolete and has been replaced by safer alternatives in recent decades. It has been used

<span class="mw-page-title-main">Potassium perchlorate</span> Chemical compound

Potassium perchlorate is the inorganic salt with the chemical formula KClO4. Like other perchlorates, this salt is a strong oxidizer although it usually reacts very slowly with organic substances. This, usually obtained as a colorless, crystalline solid, is a common oxidizer used in fireworks, ammunition percussion caps, explosive primers, and is used variously in propellants, flash compositions, stars, and sparklers. It has been used as a solid rocket propellant, although in that application it has mostly been replaced by the higher performance ammonium perchlorate.

<span class="mw-page-title-main">Dichlorine heptoxide</span> Chemical compound

Dichlorine heptoxide is the chemical compound with the formula Cl2O7. This chlorine oxide is the anhydride of perchloric acid. It is produced by the careful distillation of perchloric acid in the presence of the dehydrating agent phosphorus pentoxide:

<span class="mw-page-title-main">Sodium perchlorate</span> Chemical compound

Sodium perchlorate is an inorganic compound with the chemical formula NaClO4. It consists of sodium cations Na+ and perchlorate anions ClO−4. It is a white crystalline, hygroscopic solid that is highly soluble in water and ethanol. It is usually encountered as sodium perchlorate monohydrate NaClO4·H2O. The compound is noteworthy as the most water-soluble of the common perchlorate salts.

<span class="mw-page-title-main">Lithium perchlorate</span> Chemical compound

Lithium perchlorate is the inorganic compound with the formula LiClO4. This white or colourless crystalline salt is noteworthy for its high solubility in many solvents. It exists both in anhydrous form and as a trihydrate.

<span class="mw-page-title-main">Silver perchlorate</span> Chemical compound

Silver perchlorate is the chemical compound with the formula AgClO4. This white solid forms a monohydrate and is mildly deliquescent. It is a useful source of the Ag+ ion, although the presence of perchlorate presents risks. It is used as a catalyst in organic chemistry.

Selenic acid is the inorganic compound with the formula H2SeO4. It is an oxoacid of selenium, and its structure is more accurately described as O2Se(OH)2. It is a colorless compound. Although it has few uses, one of its salts, sodium selenate is used in the production of glass and animal feeds.

A solubility chart is a chart describing whether the ionic compounds formed from different combinations of cations and anions dissolve in or precipitate from solution.

<span class="mw-page-title-main">Barium chlorate</span> Chemical compound

Barium chlorate, Ba(ClO3)2, is the barium salt of chloric acid. It is a white crystalline solid, and like all soluble barium compounds, irritant and toxic. It is sometimes used in pyrotechnics to produce a green color. It also finds use in the production of chloric acid.

<span class="mw-page-title-main">Barium ferrate</span> Chemical compound

Barium ferrate is the chemical compound of formula BaFeO4. This is a rare compound containing iron in the +6 oxidation state. The ferrate(VI) ion has two unpaired electrons, making it paramagnetic. It is isostructural with BaSO4, and contains the tetrahedral [FeO4]2− anion.

<span class="mw-page-title-main">Fluorine perchlorate</span> Chemical compound

Fluorine perchlorate, also called perchloryl hypofluorite is the rarely encountered chemical compound of fluorine, chlorine, and oxygen with the chemical formula ClO
4
F
or FOClO
3
. It is an extremely unstable gas that explodes spontaneously and has a penetrating odor.

<span class="mw-page-title-main">Calcium perchlorate</span> Chemical compound

Calcium perchlorate is classified as a metal perchlorate salt with the molecular formula Ca(ClO4)2. It is an inorganic compound that is a yellow-white crystalline solid in appearance. As a strong oxidizing agent, it reacts with reducing agents when heated to generate heat and products that may be gaseous. Calcium perchlorate has been categorized as having explosive reactivity. Ca(ClO4)2 is a common chemical on the soil of planet Mars, counting for almost 1% of the Martian dust, by weight.

Perchloratoborate is an anion of the form [B(ClO4)4]. It can form partly stable solid salts with heavy alkali metals. They are more stable than nitratoborate salts. K[B(ClO4)4] decomposes at 35 °C, Rb[B(ClO4)4] is stable to 50 °C, and Cs[B(ClO4)4] can exist up to 80 °C.

<span class="mw-page-title-main">Titanium perchlorate</span> Chemical compound

Titanium perchlorate is a molecular compound of titanium and perchlorate groups with formula Ti(ClO4)4. Anhydrous titanium perchlorate decomposes explosively at 130 °C and melts at 85 °C with a slight decomposition. It can sublime in a vacuum as low as 70 °C, and can form vapour at up to 120°. Titanium perchlorate is quite volatile. It has density 2.35. It decomposes to TiO2, ClO2 and dioxygen O2 Also TiO(ClO4)2 is formed during decomposition.

<span class="mw-page-title-main">Vanadyl perchlorate</span> Chemical compound

Vanadyl perchlorate or vanadyl triperchlorate is a golden yellow coloured liquid or crystalline compound of vanadium, oxygen and perchlorate group. The substance consists of molecules covalently bound and is quite volatile; it ignites organic solvents on contact and explodes at temperatures above 80 °C.

Zirconium perchlorate is a molecular substance containing zirconium and perchlorate groups with formula Zr(ClO4)4. Zr(ClO4)4 is a volatile crystalline product. It can be formed by reacting zirconium tetrachloride with dry perchloric acid at liquid nitrogen temperatures. Zr(ClO4)4 sublimes slowly in a vacuum at 70°C showing that the molecule is covalently bound rather than being ionic. The reaction also forms some zirconyl perchlorate (or zirconium oxyperchlorate) ZrO(ClO4)2 as even apparently pure perchloric acid is in equilibrium with dichlorine heptoxide, hydronium ions and perchlorate ions. This side product can be minimised by adding more dichlorine heptoxide or doing the reaction as cold as possible.

Copper(II) chlorate is a chemical compound of the transition metal copper and the chlorate anion with basic formula Cu(ClO3)2. Copper chlorate is an oxidiser. It commonly forms the tetrahydrate, Cu(ClO3)2·4H2O.

<span class="mw-page-title-main">Nickel(II) perchlorate</span> Compound of nickel

Nickel(II) perchlorate is a inorganic compound with the chemical formula of Ni(ClO4)2, and it is a strong oxidizing agent. Its colors are different depending on water. For example, the hydrate forms cyan crystals, the pentahydrate forms green crystals, but the hexahydrate (Ni(ClO4)2·6H2O) forms blue crystals.

<span class="mw-page-title-main">Lead(II) perchlorate</span> Chemical compound

Lead(II) perchlorate is a chemical compound with the formula Pb(ClO4)2·xH2O, where is x is 0,1, or 3. It is an extremely hygroscopic white solid that is very soluble in water.

References

  1. Haynes, editor in chief, William M (2011-06-06). CRC handbook of chemistry and physics : a ready-reference book of chemical and physical data (92nd ed.). Boca Raton, Florida: CRC Press. ISBN   978-1-4398-5511-9.{{cite book}}: |first= has generic name (help)CS1 maint: multiple names: authors list (link)
  2. Gallucci, J. C.; Gerkin, R. E. (1988-11-01). "Structure of barium perchlorate trihydrate". Acta Crystallographica Section C. 44 (11): 1873–1876. Bibcode:1988AcCrC..44.1873G. doi:10.1107/s0108270188008200. ISSN   0108-2701. PMID   2855929.
  3. 1 2 3 4 Warren, Francis (1960). Chlorates and perchlorates, their manufacture, properties and uses. Defense Technical Information Center. p. 147.
  4. Acheson, R. J.; Jacobs, P. W. M. (1969-08-15). "Thermal decomposition of barium perchlorate". Canadian Journal of Chemistry. 47 (16): 3031–3039. doi:10.1139/v69-501. ISSN   0008-4042.
  5. 1 2 Fritz, K. S.; Yamamura, S. S. (September 1955). "Rapid Microtitration of Sulfate". Analytical Chemistry. 27 (9): 1461–1464. doi:10.1021/ac60105a030. ISSN   0003-2700.
  6. Production of detonatable explosive emulsion preparations, 1962-05-21, retrieved 2018-04-27
  7. Serafin, A.; Stańczak, A. (2009-02-01). "The complexes of metal ions with fluoroquinolones". Russian Journal of Coordination Chemistry. 35 (2): 81–95. doi:10.1134/S1070328409020018. ISSN   1070-3284. S2CID   95087424.
  8. Smith, G. Frederick (March 1927). "Anhydrous Barium Perchlorate and Mixed Alkaline-Earth Metal Perchlorates as Dehydrating Reagents1". Industrial & Engineering Chemistry. 19 (3): 411–414. doi:10.1021/ie50207a027. ISSN   0019-7866.