Caesium perchlorate

Last updated
Caesium perchlorate [1] [2]
Cesium perchlorate.png
Cesium perchlorate 25g.jpg
Names
IUPAC name
Caesium perchlorate
Other names
Cesium perchlorate
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.033.298 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 236-643-0
PubChem CID
  • InChI=1S/ClHO4.Cs/c2-1(3,4)5;/h(H,2,3,4,5);/q;+1/p-1 Yes check.svgY
    Key: WKDKOOITVYKILI-UHFFFAOYSA-M Yes check.svgY
  • InChI=1/ClHO4.Cs/c2-1(3,4)5;/h(H,2,3,4,5);/q;+1/p-1
    Key: WKDKOOITVYKILI-REWHXWOFAB
  • [Cs+].[O-]Cl(=O)(=O)=O
Properties
CsClO4
Molar mass 232.36 g/mol
AppearanceColorless crystals
Density 3.327 g/cm3
Melting point 250 °C (482 °F; 523 K) (decomposes)
1.974 g/100 ml (25 °C)
3.95×103 [3]
1.4887
Structure
orthorhombic (<219 °C)
cubic (>219 °C, a = 798 pm)
Pnma (<219 °C)
F43m (>219 °C)
a = 982 pm, b = 600 pm, c = 779 pm (orthorhombic, <219 °C)
Hazards
Flash point Non-flammable
Safety data sheet (SDS) External MSDS
Related compounds
Other anions
Caesium chloride
Caesium chlorate
Other cations
Lithium perchlorate
Sodium perchlorate
Potassium perchlorate
Rubidium perchlorate
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

Caesium perchlorate or cesium perchlorate (CsClO4), is a perchlorate of caesium. It forms white crystals, which are sparingly soluble in cold water and ethanol. It dissolves more easily in hot water.

CsClO4 is the second least soluble of the alkali metal perchlorates (after Fr, followed by Rb, K, Li, and Na), a property which may be used for separatory purposes and even for gravimetric analysis. [4] This low solubility played an important role in the characterization of francium as an alkali metal, as francium perchlorate coprecipitates with caesium perchlorate. [5]

Table of solubility in water [1] [2]
Temperature (°C)08.514254050607099
Solubility (g / 100 ml)0.80.911.911.9743.6945.477.309.7928.57

When heated, CsClO4 decomposes to caesium chloride above 250 °C. Like all perchlorates, it is a strong oxidant and may react violently with reducing agents and organic materials, especially at elevated temperatures.

Related Research Articles

<span class="mw-page-title-main">Alkali metal</span> Group of highly reactive chemical elements

The alkali metals consist of the chemical elements lithium (Li), sodium (Na), potassium (K), rubidium (Rb), caesium (Cs), and francium (Fr). Together with hydrogen they constitute group 1, which lies in the s-block of the periodic table. All alkali metals have their outermost electron in an s-orbital: this shared electron configuration results in their having very similar characteristic properties. Indeed, the alkali metals provide the best example of group trends in properties in the periodic table, with elements exhibiting well-characterised homologous behaviour. This family of elements is also known as the lithium family after its leading element.

<span class="mw-page-title-main">Caesium</span> Chemical element, symbol Cs and atomic number 55

Caesium is a chemical element; it has symbol Cs and atomic number 55. It is a soft, silvery-golden alkali metal with a melting point of 28.5 °C, which makes it one of only five elemental metals that are liquid at or near room temperature. Caesium has physical and chemical properties similar to those of rubidium and potassium. It is pyrophoric and reacts with water even at −116 °C (−177 °F). It is the least electronegative element, with a value of 0.79 on the Pauling scale. It has only one stable isotope, caesium-133. Caesium is mined mostly from pollucite. Caesium-137, a fission product, is extracted from waste produced by nuclear reactors. It has the largest atomic radius of all elements whose radii have been measured or calculated, at about 260 picometers.

<span class="mw-page-title-main">Francium</span> Chemical element, symbol Fr and atomic number 87

Francium is a chemical element; it has symbol Fr and atomic number 87. It is extremely radioactive; its most stable isotope, francium-223, has a half-life of only 22 minutes. It is the second-most electropositive element, behind only caesium, and is the second rarest naturally occurring element. Francium's isotopes decay quickly into astatine, radium, and radon. The electronic structure of a francium atom is [Rn] 7s1; thus, the element is classed as an alkali metal.

<span class="mw-page-title-main">Rubidium</span> Chemical element, symbol Rb and atomic number 37

Rubidium is a chemical element; it has symbol Rb and atomic number 37. It is a very soft, whitish-grey solid in the alkali metal group, similar to potassium and caesium. Rubidium is the first alkali metal in the group to have a density higher than water. On Earth, natural rubidium comprises two isotopes: 72% is a stable isotope 85Rb, and 28% is slightly radioactive 87Rb, with a half-life of 48.8 billion years—more than three times as long as the estimated age of the universe.

<span class="mw-page-title-main">Caesium fluoride</span> Chemical compound

Caesium fluoride or cesium fluoride is an inorganic compound with the formula CsF and it is a hygroscopic white salt. Caesium fluoride can be used in organic synthesis as a source of the fluoride anion. Caesium also has the highest electropositivity of all known elements and fluorine has the highest electronegativity of all known elements.

<span class="mw-page-title-main">Sodium perchlorate</span> Chemical compound

Sodium perchlorate is an inorganic compound with the chemical formula NaClO4. It consists of sodium cations Na+ and perchlorate anions ClO−4. It is a white crystalline, hygroscopic solid that is highly soluble in water and ethanol. It is usually encountered as sodium perchlorate monohydrate NaClO4·H2O. The compound is noteworthy as the most water-soluble of the common perchlorate salts.

<span class="mw-page-title-main">Caesium chloride</span> Chemical compound

Caesium chloride or cesium chloride is the inorganic compound with the formula CsCl. This colorless salt is an important source of caesium ions in a variety of niche applications. Its crystal structure forms a major structural type where each caesium ion is coordinated by 8 chloride ions. Caesium chloride dissolves in water. CsCl changes to NaCl structure on heating. Caesium chloride occurs naturally as impurities in carnallite, sylvite and kainite. Less than 20 tonnes of CsCl is produced annually worldwide, mostly from a caesium-bearing mineral pollucite.

<span class="mw-page-title-main">Rubidium perchlorate</span> Chemical compound

Rubidium perchlorate, RbClO4, is the perchlorate of rubidium. It is an oxidizing agent, as are all perchlorates.

<span class="mw-page-title-main">Scandium chloride</span> Chemical compound

Scandium(III) chloride is the inorganic compound with the formula ScCl3. It is a white, high-melting ionic compound, which is deliquescent and highly water-soluble. This salt is mainly of interest in the research laboratory. Both the anhydrous form and hexahydrate (ScCl3•6H2O) are commercially available.

<span class="mw-page-title-main">Caesium chromate</span> Chemical compound

Caesium chromate or cesium chromate is an inorganic compound with the formula Cs2CrO4. It is a yellow crystalline solid that is the caesium salt of chromic acid, and it crystallises in the orthorhombic system.

<span class="mw-page-title-main">Thallium(I) chloride</span> Chemical compound

Thallium(I) chloride, also known as thallous chloride, is a chemical compound with the formula TlCl. This colourless salt is an intermediate in the isolation of thallium from its ores. Typically, an acidic solution of thallium(I) sulfate is treated with hydrochloric acid to precipitate insoluble thallium(I) chloride. This solid crystallizes in the caesium chloride motif.

<span class="mw-page-title-main">Caesium bromide</span> Chemical compound

Caesium bromide or cesium bromide is an ionic compound of caesium and bromine with the chemical formula CsBr. It is a white or transparent solid with melting point at 636 °C that readily dissolves in water. Its bulk crystals have the cubic CsCl structure, but the structure changes to the rocksalt type in nanometer-thin film grown on mica, LiF, KBr or NaCl substrates.

<span class="mw-page-title-main">Caesium hydride</span> Chemical compound

Caesium hydride or cesium hydride is an inorganic compound of caesium and hydrogen with the chemical formula CsH. It is an alkali metal hydride. It was the first substance to be created by light-induced particle formation in metal vapor, and showed promise in early studies of an ion propulsion system using caesium. It is the most reactive stable alkaline metal hydride of all. It is a powerful superbase and reacts with water extremely vigorously.

Barium perchlorate is a powerful oxidizing agent, with the formula Ba(ClO4)2. It is used in the pyrotechnic industry.

<span class="mw-page-title-main">Calcium perchlorate</span> Chemical compound

Calcium perchlorate is classified as a metal perchlorate salt with the molecular formula Ca(ClO4)2. It is an inorganic compound that is a yellow-white crystalline solid in appearance. As a strong oxidizing agent, it reacts with reducing agents when heated to generate heat and products that may be gaseous. Calcium perchlorate has been categorized as having explosive reactivity. Ca(ClO4)2 is a common chemical on the soil of planet Mars, counting for almost 1% of the Martian dust, by weight.

Perchloratoborate is an anion of the form [B(ClO4)4]. It can form partly stable solid salts with heavy alkali metals. They are more stable than nitratoborate salts. K[B(ClO4)4] decomposes at 35 °C, Rb[B(ClO4)4] is stable to 50 °C, and Cs[B(ClO4)4] can exist up to 80 °C.

<span class="mw-page-title-main">Chromium(III) perchlorate</span> Chemical compound

Chromium(III) perchlorate is an inorganic compound, a salt with the chemical formula Cr(ClO4)3. It's hexahydrate Cr(ClO4)3·6H2O is a cyan solid that dissolves in water.

<span class="mw-page-title-main">Nickel(II) perchlorate</span> Compound of nickel

Nickel(II) perchlorate is a inorganic compound with the chemical formula of Ni(ClO4)2, and it is a strong oxidizing agent. Its colours are different depending on water. For example, the hydrate forms cyan crystals, the pentahydrate forms green crystals, but the hexahydrate (Ni(ClO4)2·6H2O) forms blue crystals.

Francium compounds are compounds containing the element francium (Fr). Due to francium being very unstable, its salts are only known to a small extent. Francium coprecipitates with several caesium salts, such as caesium perchlorate, which results in small amounts of francium perchlorate. This coprecipitation can be used to isolate francium, by adapting the radiocaesium coprecipitation method of Lawrence E. Glendenin and C. M. Nelson. It will additionally coprecipitate with many other caesium salts, including the iodate, the picrate, the tartrate, the chloroplatinate, and the silicotungstate. It also coprecipitates with silicotungstic acid, and with perchloric acid, without another alkali metal as a carrier, which leads to other methods of separation.

<span class="mw-page-title-main">Rubidium permanganate</span> Chemical compound

Rubidium permanganate is the permanganate salt of rubidium, with the chemical formula RbMnO
4
.

References

  1. 1 2 Perry, Dale L.; Phillips, Sidney L. (1995), Handbook of Inorganic Compounds, CRC Press.
  2. 1 2 Brezina, F.; Mollin, J.; Pastorek, R.; Sindelar, Z. (1986), Chemicke tabulky anorganickych sloucenin, SNTL.
  3. John Rumble (June 18, 2018). CRC Handbook of Chemistry and Physics (99 ed.). CRC Press. pp. 5–188. ISBN   978-1138561632.
  4. Greenwood, Norman N.; Earnshaw, Alan (1984). Chemistry of the Elements. Oxford: Pergamon Press. p. 1017. ISBN   978-0-08-022057-4..
  5. Hyde, E. K. (1952), "Radiochemical Methods for the Isolation of Element 87 (Francium)", J. Am. Chem. Soc., 74 (16): 4181–84, doi:10.1021/ja01136a066, hdl: 2027/mdp.39015086483156