Caesium carbonate

Last updated
Caesium carbonate [1]
Cesium carbonate.svg
Caesium-carbonate-3D-Balls.png
  Caesium, Cs
  Carbon, C
  Oxygen, O
Caesium carbonate.jpg
Names
Preferred IUPAC name
Dicaesium carbonate
Other names
  • Caesium carbonate
  • Cesium carbonate
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.007.812 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 208-591-9
PubChem CID
UNII
  • InChI=1S/CH2O3.2Cs/c2-1(3)4;;/h(H2,2,3,4);;/q;2*+1/p-2 Yes check.svgY
    Key: FJDQFPXHSGXQBY-UHFFFAOYSA-L Yes check.svgY
  • InChI=1/CH2O3.2Cs/c2-1(3)4;;/h(H2,2,3,4);;/q;2*+1/p-2
    Key: FJDQFPXHSGXQBY-NUQVWONBAO
  • [Cs+].[Cs+].[O-]C([O-])=O
Properties
Cs2CO3
Molar mass 325.819 g·mol−1
Appearancewhite powder
Density 4.072 g/cm3
Melting point 610 °C (1,130 °F; 883 K) (decomposes)
2605 g/L (15 °C)
Solubility in ethanol 110 g/L
Solubility in dimethylformamide 119.6 g/L
Solubility in dimethyl sulfoxide 361.7 g/L
Solubility in sulfolane 394.2 g/L
Solubility in methylpyrrolidone 723.3 g/L
−103.6·10−6 cm3/mol
Hazards
GHS labelling: [2]
GHS-pictogram-acid.svg GHS-pictogram-exclam.svg GHS-pictogram-silhouette.svg
Danger
H315, H318, H319, H335, H361f, H373
P203, P260, P261, P264, P264+P265, P271, P280, P302+P352, P304+P340, P305+P351+P338, P305+P354+P338, P317, P318, P319, P321, P332+P317, P337+P317, P362+P364, P403+P233, P405, P501
Flash point Non-flammable
Related compounds
Other anions
Caesium bicarbonate
Other cations
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

Caesium carbonate or cesium carbonate is a chemical compound with the chemical formula Cs 2 C O 3. It is white crystalline solid. Caesium carbonate has a high solubility in polar solvents such as water, ethanol and DMF. Its solubility is higher in organic solvents compared to other carbonates like potassium carbonate and sodium carbonate, although it remains quite insoluble in other organic solvents such as toluene, p-xylene, and chlorobenzene. This compound is used in organic synthesis as a base. [3] It also appears to have applications in energy conversion.

Contents

Preparation

Caesium carbonate can be prepared by thermal decomposition of caesium oxalate. [4] Upon heating, caesium oxalate is converted to caesium carbonate with emission of carbon monoxide.

Cs2C2O4 → Cs2CO3 + CO

It can also be synthesized by reacting caesium hydroxide with carbon dioxide. [4]

2 CsOH + CO2 → Cs2CO3 + H2O

Reactions

Caesium carbonate facilitates the N-alkylation of compounds such as sulfonamides, amines, β-lactams, indoles, heterocyclic compounds, N-substituted aromatic imides, phthalimides, and other similar compounds. [5]

Caesium carbonate and copper(II) chloride are used in the aerobic oxidation of primary alcohols. [6]

Caesium carbonate can also be used in Suzuki, Heck, and Sonogashira coupling reactions.[ citation needed ]

Caesium carbonate produces carbonylation of alcohols and carbamination [ clarification needed ] of amines more efficiently than some of the mechanisms that have been introduced in the past. [7]

Caesium carbonate can be used for sensitive synthesis when a balanced strong base is needed.[ citation needed ]

Use

Solar cells

Relatively effective polymer solar cells are built by thermal annealing of caesium carbonate. Caesium carbonate increases the energy effectiveness of the power conversion of solar cells and enhances the life times of the equipment. [8] Studies done on UPS and XPS reveal that the system will do less work due to the thermal annealing of the Cs2CO3 layer.

Caesium carbonate breaks down into Cs2O and Cs2O2 by thermal evaporation. It was suggested that, when Cs2O combines with Cs2O2 they produce n-type dopes that supply additional conducting electrons to the host devices. This produces a highly efficient inverted cell that can be used to further improve the efficiency of polymer solar cells or to design adequate multijunction photovoltaic cells. [9]

The n-type semiconductor produced by thermal evaporation of Cs2CO3 reacts intensively with metals like Al, and Ca in the cathode. This reaction will reduce the work on the cathode metals. [10]

Organic electronic materials

Nanostructure layers of Cs2CO3 can be used as cathodes for organic electronic materials due to their capacity to increase the kinetic energy of the electrons. Applications include photovoltaic studies, current-voltage measurements, UV photoelectron spectroscopy, X-ray photoelectron spectroscopy, and impedance spectroscopy.

Devices with Cs2CO3 layers have produced equivalent power conversion efficiency compared to devices that use lithium fluoride. [11]

OLEDs

Placing a Cs2CO3 layer in between the cathode and the light-emitting polymer improves the efficiency of the white OLED.[ citation needed ]

References

  1. Weast, Robert C., ed. (1981). CRC Handbook of Chemistry and Physics (62nd ed.). Boca Raton, Florida: CRC Press. p. B-91. ISBN   0-8493-0462-8..
  2. PubChem. "Cesium carbonate". pubchem.ncbi.nlm.nih.gov. Retrieved 2026-01-18.
  3. Sivik, Mark R.; Ghosh, Arun K.; Sarkar, Anindya (2001). "Cesium Carbonate". Encyclopedia of Reagents for Organic Synthesis. pp. 1–12. doi:10.1002/047084289X.rc049.pub2. ISBN   9780470842898.
  4. 1 2 E. L. Simons; E. J. Cairns; L. D. Sangermano (1966). "Purification and preparation of some caesium compounds". Talanta. 13 (2): 199–204. doi:10.1016/0039-9140(66)80026-7. PMID   18959868.
  5. Mercedes, Escudero; Lautaro D. Kremenchuzky; a Isabel A. Perillo; Hugo Cerecetto; María Blanco (2010). "Efficient Cesium Carbonate Promoted N-Alkylations of Aromatic Cyclic Imides Under Microwave Irradiation". Synthesis. 2011 (4): 571. doi:10.1055/s-0030-1258398.
  6. Lie, Liand; Guodong Rao; Hao-Ling Sun; Jun-Long Zhang (2010). "Aerobic Oxidation of Primary Alcohols Catalyzed by Copper Salts and Catalytically Active m-Hydroxyl-Bridged Trinuclear Copper Intermediate" (PDF). Advanced Synthesis & Catalysis. 352 (23): 2371–2377. doi:10.1002/adsc.201000456. Archived from the original (reprint) on 2014-02-01. Retrieved 2012-04-27.
  7. Rattan, Gujadhur; D. Venkataraman; Jeremy T. Kintigh (2001). "Formation of aryl–nitrogen bonds using a soluble copper(I) catalyst" (PDF). Tetrahedron Letters. 42 (29): 4791–4793. doi:10.1016/s0040-4039(01)00888-7.
  8. Jinsong, Huang; Zheng Xu; Yang Yang (2007). 2CO3.pdf "Low-Work-Function Surface Formed by Solution-Processed and Thermally Deposited Nanoscale Layers of Cesium Carbonate" (PDF). Advanced Functional Materials. 17 (19): 1966–1973. doi:10.1002/adfm.200700051. S2CID   44557096 . Retrieved 2012-03-31.[ permanent dead link ]
  9. Hua-Hstien, Liao; Li-Min Chen; Zheng Xu; Gang Li; Yang Yang (2008). "Highly efficient inverted polymer solar cell by low temperature annealing of Cs2CO3 interlayer" (PDF). Applied Physics Letters. 92 (17): 173303. Bibcode:2008ApPhL..92q3303L. doi:10.1063/1.2918983. Archived from the original (PDF) on 2013-11-05. Retrieved 2012-04-27.
  10. Wang, Jen-Chun; Weng, Wei-Tse; Tsai, Meng-Yen; Lee, Ming-Kun; Horng, Sheng-Fu; Perng, Tsong-Pyng; Kei, Chi-Chung; Yu, Chih-Chieh; Meng, Hsin-Fei (2010-01-19). "Highly efficient flexible inverted organic solar cells using atomic layer deposited ZnO as electron selective layer". Journal of Materials Chemistry. 20 (5): 862–866. doi:10.1039/B921396A. ISSN   1364-5501.
  11. Huang, J.; Xu, Z.; Yang, Y. (2007). "Low-Work-Function Surface Formed by Solution-Processed and Thermally Deposited Nanoscale Layers of Cesium Carbonate". Advanced Functional Materials. 17 (12): 1966–1973. doi:10.1002/adfm.200700051. ISSN   1616-3028.

Further reading