Zinc carbonate

Last updated
Zinc carbonate
Zn2+[CO32−]
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.020.435 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 222-477-6
  • basic:226-076-7
PubChem CID
UNII
UN number 9157
  • InChI=1S/CH2O3.Zn/c2-1(3)4;/h(H2,2,3,4);/q;+2/p-2
    Key: FMRLDPWIRHBCCC-UHFFFAOYSA-L
  • C(=O)([O-])[O-].[Zn+2]
Properties
ZnCO3
Molar mass 125.4
Appearancewhite solid
Density 4.434 g/cm3 [1]
Melting point 140 °C (284 °F; 413 K) [1] (decomposes)
0.91 mg/L [1]
1.46×10−10 [2]
-34×10−6 cm3/mol [3]
n1=1.621, n2=1.848 [4]
Structure [5]
Calcite, hR30, No. 167
R3c
a = 4.6528 Å, c = 15.025 Å
6
Hazards
GHS labelling:
GHS-pictogram-pollu.svg
Warning
H319, H410, H411
P264, P273, P280, P302+P352, P305+P351+P338, P321, P332+P313, P337+P313, P362, P391, P501
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Zinc carbonate is the inorganic compound with the formula ZnCO3. It is a white solid that is insoluble in water. It exists in nature as the mineral smithsonite. It is prepared by treating cold solutions of zinc sulfate with potassium bicarbonate. Upon warming, it converts to basic zinc carbonate (Zn5(CO3)2(OH)6). [6]

Contents

Structure

Zinc carbonate crystallizes in the same dense motif as calcium carbonate. Color code: red = O, green = Zn. Calcium-carbonate-xtal-3D-SF.png
Zinc carbonate crystallizes in the same dense motif as calcium carbonate. Color code: red = O, green = Zn.

MnCO3 adopts a structure like calcite, consisting of manganese(II) ions in an octahedral coordination geometry. [7]

Zinc carbonate adopts the same structure as calcium carbonate (calcite). [8] Zinc is octahedral and each carbonate is bonded to six Zn centers such that oxygen atoms are three-coordinate.

Related Research Articles

<span class="mw-page-title-main">Silver iodide</span> Chemical compound

Silver iodide is an inorganic compound with the formula AgI. The compound is a bright yellow solid, but samples almost always contain impurities of metallic silver that give a grey colouration. The silver contamination arises because some samples of AgI can be highly photosensitive. This property is exploited in silver-based photography. Silver iodide is also used as an antiseptic and in cloud seeding.

<span class="mw-page-title-main">Copper(II) sulfate</span> Chemical compound

Copper(II) sulfate is an inorganic compound with the chemical formula CuSO4. It forms hydrates CuSO4·nH2O, where n can range from 1 to 7. The pentahydrate (n = 5), a bright blue crystal, is the most commonly encountered hydrate of copper(II) sulfate, while its anhydrous form is white. Older names for the pentahydrate include blue vitriol, bluestone, vitriol of copper, and Roman vitriol. It exothermically dissolves in water to give the aquo complex [Cu(H2O)6]2+, which has octahedral molecular geometry. The structure of the solid pentahydrate reveals a polymeric structure wherein copper is again octahedral but bound to four water ligands. The Cu(II)(H2O)4 centers are interconnected by sulfate anions to form chains.

<span class="mw-page-title-main">Zinc chloride</span> Chemical compound

Zinc chloride is an inorganic chemical compound with the formula ZnCl2·nH2O, with n ranging from 0 to 4.5, forming hydrates. Zinc chloride, anhydrous and its hydrates, are colorless or white crystalline solids, and are highly soluble in water. Five hydrates of zinc chloride are known, as well as four polymorphs of anhydrous zinc chloride.

<span class="mw-page-title-main">Beryllium oxide</span> Chemical compound

Beryllium oxide (BeO), also known as beryllia, is an inorganic compound with the formula BeO. This colourless solid is an electrical insulator with a higher thermal conductivity than any other non-metal except diamond, and exceeds that of most metals. As an amorphous solid, beryllium oxide is white. Its high melting point leads to its use as a refractory material. It occurs in nature as the mineral bromellite. Historically and in materials science, beryllium oxide was called glucina or glucinium oxide, owing to its sweet taste.

<span class="mw-page-title-main">Zinc acetate</span> Chemical compound

Zinc acetate is a salt with the formula Zn(CH3CO2)2, which commonly occurs as the dihydrate Zn(CH3CO2)2·2H2O. Both the hydrate and the anhydrous forms are colorless solids that are used as dietary supplements. When used as a food additive, it has the E number E650.

<span class="mw-page-title-main">Iron(II) hydroxide</span> Chemical compound

Iron (II) hydroxide or ferrous hydroxide is an inorganic compound with the formula Fe(OH)2. It is produced when iron (II) salts, from a compound such as iron(II) sulfate, are treated with hydroxide ions. Iron(II) hydroxide is a white solid, but even traces of oxygen impart a greenish tinge. The air-oxidised solid is sometimes known as "green rust".

<span class="mw-page-title-main">Manganese(II) carbonate</span> Chemical compound

Manganese carbonate is a compound with the chemical formula MnCO3. Manganese carbonate occurs naturally as the mineral rhodochrosite but it is typically produced industrially. It is a pale pink, water-insoluble solid. Approximately 20,000 metric tonnes were produced in 2005.

<span class="mw-page-title-main">Chromium(II) chloride</span> Chemical compound

Chromium(II) chloride describes inorganic compounds with the formula CrCl2(H2O)n. The anhydrous solid is white when pure, however commercial samples are often grey or green; it is hygroscopic and readily dissolves in water to give bright blue air-sensitive solutions of the tetrahydrate Cr(H2O)4Cl2. Chromium(II) chloride has no commercial uses but is used on a laboratory-scale for the synthesis of other chromium complexes.

<span class="mw-page-title-main">Nickel(II) carbonate</span> Chemical compound

Nickel(II) carbonate describes one or a mixture of inorganic compounds containing nickel and carbonate. From the industrial perspective, an important nickel carbonate is basic nickel carbonate with the formula Ni4CO3(OH)6(H2O)4. Simpler carbonates, ones more likely encountered in the laboratory, are NiCO3 and its hexahydrate. All are paramagnetic green solids containing Ni2+ cations. The basic carbonate is an intermediate in the hydrometallurgical purification of nickel from its ores and is used in electroplating of nickel.

<span class="mw-page-title-main">Zinc fluoride</span> Chemical compound

Zinc fluoride is an inorganic chemical compound with the chemical formula ZnF2. It is encountered as the anhydrous form and also as the tetrahydrate, ZnF2·4H2O (rhombohedral crystal structure). It has a high melting point and has the rutile structure containing 6 coordinate zinc, which suggests appreciable ionic character in its chemical bonding. Unlike the other zinc halides, ZnCl2, ZnBr2 and ZnI2, it is not very soluble in water.

<span class="mw-page-title-main">Zinc nitrate</span> Chemical compound

Zinc nitrate is an inorganic chemical compound with the formula Zn(NO3)2. This colorless, crystalline salt is highly deliquescent. It is typically encountered as a hexahydrate Zn(NO3)2·6H2O. It is soluble in both water and alcohol.

<span class="mw-page-title-main">Zinc molybdate</span> Chemical compound

Zinc molybdate is an inorganic compound with the formula ZnMoO4. It is used as a white pigment, which is also a corrosion inhibitor. A related pigment is sodium zinc molybdate, Na2Zn(MoO4)2. The material has also been investigated as an electrode material.

<span class="mw-page-title-main">Zinc pyrophosphate</span> Chemical compound

Zinc pyrophosphate (Zn2P2O7) is an ionic inorganic chemical compound composed of Zn2+ cations and pyrophosphate anions.

<span class="mw-page-title-main">Iron(II) carbonate</span> Chemical, compound of iron carbon and oxygen

Iron(II) carbonate, or ferrous carbonate, is a chemical compound with formula FeCO
3
, that occurs naturally as the mineral siderite. At ordinary ambient temperatures, it is a green-brown ionic solid consisting of iron(II) cations Fe2+
and carbonate anions CO2−
3
. The compound crystallizes in the same motif as calcium carbonate. In this motif, the carbonate dianion is nearly planar. Its three oxygen atoms each bind to two Fe(II) centers, such that the Fe has an octahedral coordination geometry.

<span class="mw-page-title-main">Barium sulfide</span> Chemical compound

Barium sulfide is the inorganic compound with the formula BaS. BaS is the barium compound produced on the largest scale. It is an important precursor to other barium compounds including BaCO3 and the pigment lithopone, ZnS/BaSO4. Like other chalcogenides of the alkaline earth metals, BaS is a short wavelength emitter for electronic displays. It is colorless, although like many sulfides, it is commonly obtained in impure colored forms.

<span class="mw-page-title-main">Cobalt(II) carbonate</span> Chemical compound

Cobalt(II) carbonate is the inorganic compound with the formula CoCO3. This pink paramagnetic solid is an intermediate in the hydrometallurgical purification of cobalt from its ores. It is an inorganic pigment, and a precursor to catalysts. Cobalt(II) carbonate also occurs as the rare red/pink mineral spherocobaltite.

<span class="mw-page-title-main">Cobalt(II,III) oxide</span> Chemical compound

Cobalt(II,III) oxide is an inorganic compound with the formula Co3O4. It is one of two well characterized cobalt oxides. It is a black antiferromagnetic solid. As a mixed valence compound, its formula is sometimes written as CoIICoIII2O4 and sometimes as CoO•Co2O3.

Zinc compounds are chemical compounds containing the element zinc which is a member of the group 12 of the periodic table. The oxidation state of zinc in most compounds is the group oxidation state of +2. Zinc may be classified as a post-transition main group element with zinc(II). Zinc compounds are noteworthy for their nondescript appearance and behavior: they are generally colorless, do not readily engage in redox reactions, and generally adopt symmetrical structures.

<span class="mw-page-title-main">Cadmium hydroxide</span> Chemical compound

Cadmium hydroxide is an inorganic compound with the formula Cd(OH)2. It is a white crystalline ionic compound that is a key component of nickel–cadmium battery.

Europium(III) iodide is an inorganic compound containing europium and iodine with the chemical formula EuI3.

References

  1. 1 2 3 Haynes, p. 4.95
  2. Haynes, p. 5.178
  3. Haynes, p. 4.131
  4. Haynes, p. 4.137
  5. Haynes, p. 4.144
  6. Wagenknecht, F.; Juza, R. (1963). "Zinc carbonate". In G. Brauer (ed.). Handbook of Preparative Inorganic Chemistry, 2nd Ed. Vol. 2. NY, NY: Academic Press. p. 1086.
  7. Pertlik, F. (1986). "Structures of hydrothermally synthesized cobalt(II) carbonate and nickel(II) carbonate". Acta Crystallographica Section C. 42: 4–5. doi:10.1107/S0108270186097524.
  8. Effenberger, H.; Mereiter, K.; Zemann, J. (1981). "Crystal structure refinements of magnesite, calcite, rhodochrosite, siderite, smithonite, and dolomite, with discussion of some aspects of the stereochemistry of calcite type carbonates". Zeitschrift für Kristallographie - Crystalline Materials. 156 (3–4): 233–243. Bibcode:1981ZK....156..233E. doi:10.1524/zkri.1981.156.3-4.233.

Cited sources