Zinc telluride

Last updated
Zinc telluride
Zinc-selenide-unit-cell-3D-balls.png
Zinc telluride.jpg
Identifiers
3D model (JSmol)
ECHA InfoCard 100.013.874 OOjs UI icon edit-ltr-progressive.svg
PubChem CID
UNII
  • [TeH+2]12[ZnH2-2][TeH+2]3[ZnH2-2][TeH+2]([ZnH-2]14)[ZnH-2]1[Te+2]5([ZnH-2]38)[Zn-2]26[TeH+2]2[ZnH-2]([Te+2]4)[TeH+2]1[ZnH2-2][TeH+2]3[ZnH-2]2[Te+2][ZnH-2]([TeH+2]6[ZnH-2]([TeH+2])[TeH+2]68)[TeH+2]([ZnH2-2]6)[ZnH-2]35
Properties
ZnTe
Molar mass 192.99 g/mol [1]
Appearancered crystals
Density 6.34 g/cm3 [1]
Melting point 1,295 °C; 2,363 °F; 1,568 K [1]
Band gap 2.26 eV [2]
Electron mobility 340 cm2/(V·s) [2]
Thermal conductivity 108 mW/(cm·K) [1]
3.56 [2]
Structure
Zincblende (cubic)
F43m [1]
a = 610.1 pm [1]
Tetrahedral (Zn2+)
Tetrahedral (Te2−) [1]
Thermochemistry
264 J/(kg·K) [1]
Related compounds
Other anions
Zinc oxide
Zinc sulfide
Zinc selenide
Other cations
Cadmium telluride
Mercury telluride
Related compounds
Cadmium zinc telluride
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

Zinc telluride is a binary chemical compound with the formula ZnTe. This solid is a semiconductor material with a direct band gap of 2.26 eV. [2] It is usually a p-type semiconductor. Its crystal structure is cubic, like that for sphalerite and diamond. [1]

Contents

Properties

STM images of the ZnTe(110) surface, taken at different resolutions and sample rotation, together with its atomic model. ZnTe-STM2.jpg
STM images of the ZnTe(110) surface, taken at different resolutions and sample rotation, together with its atomic model.

ZnTe has the appearance of grey or brownish-red powder, or ruby-red crystals when refined by sublimation. Zinc telluride typically has a cubic (sphalerite, or "zincblende") crystal structure, but can be also prepared as rocksalt crystals or in hexagonal crystals (wurtzite structure). Irradiated by a strong optical beam burns in presence of oxygen. Its lattice constant is 0.6101 nm, allowing it to be grown with or on aluminium antimonide, gallium antimonide, indium arsenide, and lead selenide. With some lattice mismatch, it can also be grown on other substrates such as GaAs, [4] and it can be grown in thin-film polycrystalline (or nanocrystalline) form on substrates such as glass, for example, in the manufacture of thin-film solar cells. In the wurtzite (hexagonal) crystal structure, it has lattice parameters a = 0.427 and c = 0.699 nm. [5]

Applications

Optoelectronics

Zinc telluride can be easily doped, and for this reason it is one of the more common semiconducting materials used in optoelectronics. ZnTe is important for development of various semiconductor devices, including blue LEDs, laser diodes, solar cells, and components of microwave generators. It can be used for solar cells, for example, as a back-surface field layer and p-type semiconductor material for a CdTe/ZnTe structure [6] or in PIN diode structures.

The material can also be used as a component of ternary semiconductor compounds, such as CdxZn(1-x)Te (conceptually a mixture composed from the end-members ZnTe and CdTe), which can be made with a varying composition x to allow the optical bandgap to be tuned as desired.

Nonlinear optics

Zinc telluride together with lithium niobate is often used for generation of pulsed terahertz radiation in time-domain terahertz spectroscopy and terahertz imaging. When a crystal of such material is subjected to a high-intensity light pulse of subpicosecond duration, it emits a pulse of terahertz frequency through a nonlinear optical process called optical rectification. [7] Conversely, subjecting a zinc telluride crystal to terahertz radiation causes it to show optical birefringence and change the polarization of a transmitting light, making it an electro-optic detector.

Vanadium-doped zinc telluride, "ZnTe:V", is a non-linear optical photorefractive material of possible use in the protection of sensors at visible wavelengths. ZnTe:V optical limiters are light and compact, without complicated optics of conventional limiters. ZnTe:V can block a high-intensity jamming beam from a laser dazzler, while still passing the lower-intensity image of the observed scene. It can also be used in holographic interferometry, in reconfigurable optical interconnections, and in laser optical phase conjugation devices. It offers superior photorefractive performance at wavelengths between 600 and 1300 nm, in comparison with other III-V and II-VI compound semiconductors. By adding manganese as an additional dopant (ZnTe:V:Mn), its photorefractive yield can be significantly increased.

Related Research Articles

<span class="mw-page-title-main">Gallium arsenide</span> Chemical compound

Gallium arsenide (GaAs) is a III-V direct band gap semiconductor with a zinc blende crystal structure.

<span class="mw-page-title-main">Sphalerite</span> Zinc-iron sulfide mineral

Sphalerite is a sulfide mineral with the chemical formula (Zn,Fe)S. It is the most important ore of zinc. Sphalerite is found in a variety of deposit types, but it is primarily in sedimentary exhalative, Mississippi-Valley type, and volcanogenic massive sulfide deposits. It is found in association with galena, chalcopyrite, pyrite, calcite, dolomite, quartz, rhodochrosite, and fluorite.

<span class="mw-page-title-main">Zinc oxide</span> White powder insoluble in water

Zinc oxide is an inorganic compound with the formula ZnO. It is a white powder that is insoluble in water. ZnO is used as an additive in numerous materials and products including cosmetics, food supplements, rubbers, plastics, ceramics, glass, cement, lubricants, paints, sunscreens, ointments, adhesives, sealants, pigments, foods, batteries, ferrites, fire retardants, semi conductors, and first-aid tapes. Although it occurs naturally as the mineral zincite, most zinc oxide is produced synthetically.

<span class="mw-page-title-main">Cubic crystal system</span> Crystallographic system where the unit cell is in the shape of a cube

In crystallography, the cubiccrystal system is a crystal system where the unit cell is in the shape of a cube. This is one of the most common and simplest shapes found in crystals and minerals.

<span class="mw-page-title-main">Zinc sulfide</span> Inorganic compound

Zinc sulfide is an inorganic compound with the chemical formula of ZnS. This is the main form of zinc found in nature, where it mainly occurs as the mineral sphalerite. Although this mineral is usually black because of various impurities, the pure material is white, and it is widely used as a pigment. In its dense synthetic form, zinc sulfide can be transparent, and it is used as a window for visible optics and infrared optics.

<span class="mw-page-title-main">Cadmium sulfide</span> Chemical compound

Cadmium sulfide is the inorganic compound with the formula CdS. Cadmium sulfide is a yellow solid. It occurs in nature with two different crystal structures as the rare minerals greenockite and hawleyite, but is more prevalent as an impurity substituent in the similarly structured zinc ores sphalerite and wurtzite, which are the major economic sources of cadmium. As a compound that is easy to isolate and purify, it is the principal source of cadmium for all commercial applications. Its vivid yellow color led to its adoption as a pigment for the yellow paint "cadmium yellow" in the 18th century.

<span class="mw-page-title-main">Wurtzite</span>

Wurtzite is a zinc and iron sulfide mineral with the chemical formula (Zn,Fe)S, a less frequently encountered structural polymorph form of sphalerite. The iron content is variable up to eight percent. It is trimorphous with matraite and sphalerite.

<span class="mw-page-title-main">Indium antimonide</span> Chemical compound

Indium antimonide (InSb) is a crystalline compound made from the elements indium (In) and antimony (Sb). It is a narrow-gap semiconductor material from the III-V group used in infrared detectors, including thermal imaging cameras, FLIR systems, infrared homing missile guidance systems, and in infrared astronomy. Indium antimonide detectors are sensitive to infrared wavelengths between 1 and 5 μm.

<span class="mw-page-title-main">Cadmium telluride</span> Semiconductor chemical compound used in solar cells

Cadmium telluride (CdTe) is a stable crystalline compound formed from cadmium and tellurium. It is mainly used as the semiconducting material in cadmium telluride photovoltaics and an infrared optical window. It is usually sandwiched with cadmium sulfide to form a p–n junction solar PV cell.

<span class="mw-page-title-main">Cadmium selenide</span> Chemical compound

Cadmium selenide is an inorganic compound with the formula CdSe. It is a black to red-black solid that is classified as a II-VI semiconductor of the n-type. It is a pigment but applications are declining because of environmental concerns

<span class="mw-page-title-main">Zinc selenide</span> Chemical compound

Zinc selenide (ZnSe) is a light-yellow, solid compound comprising zinc (Zn) and selenium (Se). It is an intrinsic semiconductor with a band gap of about 2.70 eV at 25 °C (77 °F). ZnSe rarely occurs in nature, and is found in the mineral that was named after Hans Stille called "stilleite".

<span class="mw-page-title-main">Mercury cadmium telluride</span> Alloy

Hg1−xCdxTe or mercury cadmium telluride is a chemical compound of cadmium telluride (CdTe) and mercury telluride (HgTe) with a tunable bandgap spanning the shortwave infrared to the very long wave infrared regions. The amount of cadmium (Cd) in the alloy can be chosen so as to tune the optical absorption of the material to the desired infrared wavelength. CdTe is a semiconductor with a bandgap of approximately 1.5 electronvolts (eV) at room temperature. HgTe is a semimetal, which means that its bandgap energy is zero. Mixing these two substances allows one to obtain any bandgap between 0 and 1.5 eV.

Cadmium zinc telluride, (CdZnTe) or CZT, is a compound of cadmium, zinc and tellurium or, more strictly speaking, an alloy of cadmium telluride and zinc telluride. A direct bandgap semiconductor, it is used in a variety of applications, including semiconductor radiation detectors, photorefractive gratings, electro-optic modulators, solar cells, and terahertz generation and detection. The band gap varies from approximately 1.4 to 2.2 eV, depending on composition.

Lead selenide (PbSe), or lead(II) selenide, a selenide of lead, is a semiconductor material. It forms cubic crystals of the NaCl structure; it has a direct bandgap of 0.27 eV at room temperature. A grey solid, it is used for manufacture of infrared detectors for thermal imaging. The mineral clausthalite is a naturally occurring lead selenide.

Aluminium gallium indium phosphide is a semiconductor material that provides a platform for the development of novel multi-junction photovoltaics and optoelectronic devices, as it spans a direct bandgap from deep ultraviolet to infrared.

<span class="mw-page-title-main">Hexagonal crystal family</span> Union of crystal groups with related structures and lattices

In crystallography, the hexagonal crystal family is one of the six crystal families, which includes two crystal systems and two lattice systems. While commonly confused, the trigonal crystal system and the rhombohedral lattice system are not equivalent. In particular, there are crystals that have trigonal symmetry but belong to the hexagonal lattice.

<span class="mw-page-title-main">I-III-VI semiconductors</span>

I-III-VI2 semiconductors are solid semiconducting materials that contain three or more chemical elements belonging to groups I, III and VI (IUPAC groups 1/11, 13 and 16) of the periodic table. They usually involve two metals and one chalcogen. Some of these materials have a direct bandgap, Eg, of approximately 1.5 eV, which makes them efficient absorbers of sunlight and thus potential solar cell materials. A fourth element is often added to a I-III-VI2 material to tune the bandgap for maximum solar cell efficiency. A representative example is copper indium gallium selenide (CuInxGa(1–x)Se2, Eg = 1.7–1.0 eV for x = 0–1), which is used in copper indium gallium selenide solar cells.

II-VI semiconductor compounds are compounds composed of a metal from either group 2 or 12 of the periodic table and a nonmetal from group 16 . These semiconductors crystallize either in the zincblende lattice structure or the wurtzite crystal structure. They generally exhibit large band gaps, making them popular for short wavelength applications in optoelectronics.

Zinc oxide (ZnO) nanostructures are structures with at least one dimension on the nanometre scale, composed predominantly of zinc oxide. They may be combined with other composite substances to change the chemistry, structure or function of the nanostructures in order to be used in various technologies. Many different nanostructures can be synthesised from ZnO using relatively inexpensive and simple procedures. ZnO is a semiconductor material with a wide band gap energy of 3.3eV and has the potential to be widely used on the nanoscale. ZnO nanostructures have found uses in environmental, technological and biomedical purposes including ultrafast optical functions, dye-sensitised solar cells, lithium-ion batteries, biosensors, nanolasers and supercapacitors. Research is ongoing to synthesise more productive and successful nanostructures from ZnO and other composites. ZnO nanostructures is a rapidly growing research field, with over 5000 papers published during 2014-2019.

References

  1. 1 2 3 4 5 6 7 8 9 Haynes, William M., ed. (2011). CRC Handbook of Chemistry and Physics (92nd ed.). Boca Raton, FL: CRC Press. p. 12.80. ISBN   1-4398-5511-0.
  2. 1 2 3 4 Haynes, William M., ed. (2011). CRC Handbook of Chemistry and Physics (92nd ed.). Boca Raton, FL: CRC Press. p. 12.85. ISBN   1-4398-5511-0.
  3. Kanazawa, K.; Yoshida, S.; Shigekawa, H.; Kuroda, S. (2015). "Dynamic probe of ZnTe(110) surface by scanning tunneling microscopy". Science and Technology of Advanced Materials (free access). 16 (1): 015002. Bibcode:2015STAdM..16a5002K. doi:10.1088/1468-6996/16/1/015002. PMC   5036505 . PMID   27877752.
  4. O'Dell, Dakota (2010). MBE Growth and Characterization of ZnTe and Nitrogen-doped ZnTe on GaAs(100) Substrates, Department of Physics, University of Notre Dame.
  5. Kittel, C. (1976) Introduction to Solid State Physics, 5th edition, p. 28.
  6. Amin, N.; Sopian, K.; Konagai, M. (2007). "Numerical modeling of CdS/Cd Te and CdS/Cd Te/Zn Te solar cells as a function of Cd Te thickness". Solar Energy Materials and Solar Cells. 91 (13): 1202. doi:10.1016/j.solmat.2007.04.006.
  7. THz Generation and Detection in ZnTe. chem.yale.edu