Chromium(III) telluride

Last updated
Chromium(III) telluride
Names
IUPAC name
Chromium(III) telluride
Other names
Dichromium tritelluride
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.031.809 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 235-003-8
PubChem CID
  • InChI=1S/2Cr.3Te
    Key: PDJHBRMODJKXLQ-UHFFFAOYSA-N
  • [Te].[Cr]=[Te].[Cr]=[Te]
Properties
Cr 2 Te 3
Molar mass 486.792
AppearanceDark gray powder
Density 6.6-7.0 g/cm3
Melting point 1,300 °C (2,370 °F; 1,570 K) approximation
negligible [1]
Hazards
GHS labelling:
GHS-pictogram-exclam.svg
Warning
H302, H312, H315, H319, H332, H335
P261, P264, P270, P271, P280, P301+P312, P302+P352, P304+P312, P304+P340, P305+P351+P338, P312, P321, P322, P330, P332+P313, P337+P313, P362, P363, P403+P233, P405, P501
Related compounds
Other anions
Chromium(III) oxide
Chromium(III) sulfide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Chromium telluride (Cr2Te3) is an inorganic chemical compound. It is composed of the chromium(III) cation and the telluride anion. It has a shadowy gray color, and has a hexagonal crystal structure.

Contents

Properties

Thermodynamic

Chromium telluride samples that are highly saturated with tellurium were found to crystallize in a hexagonal structure, but trigonal lattice distortions are also possible. [1] [2]

Magnetic

Chromium telluride is strongly paramagnetic, and it can be used in the construction of nanocrystals. [3] In addition, the compound also shows ferromagnetic properties. By creating thin films of chromium telluride, the compound can be tested by reflection high-energy electron diffraction (RHEED), scanning tunneling microscopy (STM), vibrating sample magnetometry, and other physical property measurements. RHEED patterns indicate the flat, smooth growth of chromium telluride film. STM testing shows that the surface atoms of the compound arrange themselves in a hexagonal pattern. The Curie temperature was found to be 180 K [4] When transitioning between paramagnetic and ferromagnetic forms of magnetism, the surrounding magnetic field collapse into two independent curves with a sole scaling equation. [5] However, chromium telluride can still continue with a reversal of magnetism. [6]

When being measured at room temperature, the anomalous Hall voltage of chromium telluride seems to consist of both negative anomalous and positive normal component. The negative anomalous component exhibits saturation against the intensity of the magnetic field, while the positive normal component can be ascribed to hole conduction. This is measured from room temperature to 400 °C with a-c sample current and d-c magnetic field. [7]

Related Research Articles

<span class="mw-page-title-main">Diamagnetism</span> Magnetic property of ordinary materials

Diamagnetism is the property of materials that are repelled by a magnetic field; an applied magnetic field creates an induced magnetic field in them in the opposite direction, causing a repulsive force. In contrast, paramagnetic and ferromagnetic materials are attracted by a magnetic field. Diamagnetism is a quantum mechanical effect that occurs in all materials; when it is the only contribution to the magnetism, the material is called diamagnetic. In paramagnetic and ferromagnetic substances, the weak diamagnetic force is overcome by the attractive force of magnetic dipoles in the material. The magnetic permeability of diamagnetic materials is less than the permeability of vacuum, μ0. In most materials, diamagnetism is a weak effect which can be detected only by sensitive laboratory instruments, but a superconductor acts as a strong diamagnet because it entirely expels any magnetic field from its interior.

<span class="mw-page-title-main">Ferromagnetism</span> Mechanism by which materials form into and are attracted to magnets

Ferromagnetism is a property of certain materials that results in a significant, observable magnetic permeability, and in many cases, a significant magnetic coercivity, allowing the material to form a permanent magnet. Ferromagnetic materials are familiar metals that are noticeably attracted to a magnet, a consequence of their substantial magnetic permeability. Magnetic permeability describes the induced magnetization of a material due to the presence of an external magnetic field. This temporarily induced magnetization, for example, inside a steel plate, accounts for its attraction to the permanent magnet. Whether or not that steel plate acquires a permanent magnetization itself depends not only on the strength of the applied field but on the so-called coercivity of the ferromagnetic material, which can vary greatly.

<span class="mw-page-title-main">Antiferromagnetism</span> Regular pattern of magnetic moment ordering

In materials that exhibit antiferromagnetism, the magnetic moments of atoms or molecules, usually related to the spins of electrons, align in a regular pattern with neighboring spins pointing in opposite directions. This is, like ferromagnetism and ferrimagnetism, a manifestation of ordered magnetism. The phenomenon of antiferromagnetism was first introduced by Lev Landau in 1933.

<span class="mw-page-title-main">Curie temperature</span> Temperature above which magnetic properties change

In physics and materials science, the Curie temperature (TC), or Curie point, is the temperature above which certain materials lose their permanent magnetic properties, which can (in most cases) be replaced by induced magnetism. The Curie temperature is named after Pierre Curie, who showed that magnetism was lost at a critical temperature.

In physics, a ferromagnetic material is said to have magnetocrystalline anisotropy if it takes more energy to magnetize it in certain directions than in others. These directions are usually related to the principal axes of its crystal lattice. It is a special case of magnetic anisotropy. In other words, the excess energy required to magnetize a specimen in a particular direction over that required to magnetize it along the easy direction is called crystalline anisotropy energy.

Magnetic semiconductors are semiconductor materials that exhibit both ferromagnetism and useful semiconductor properties. If implemented in devices, these materials could provide a new type of control of conduction. Whereas traditional electronics are based on control of charge carriers, practical magnetic semiconductors would also allow control of quantum spin state. This would theoretically provide near-total spin polarization, which is an important property for spintronics applications, e.g. spin transistors.

<span class="mw-page-title-main">Ferrite (magnet)</span> Ferrimagnetic ceramic material composed of rust and a metallic element

A ferrite is a ceramic material made by mixing and firing iron(III) oxide with one or more additional metallic elements, such as strontium, barium, manganese, nickel, and zinc. They are ferrimagnetic, meaning they are attracted by magnetic fields and can be magnetized to become permanent magnets. Unlike other ferromagnetic materials, most ferrites are not electrically conductive, making them useful in applications like magnetic cores for transformers to suppress eddy currents. Ferrites can be divided into two families based on their resistance to being demagnetized.

Multiferroics are defined as materials that exhibit more than one of the primary ferroic properties in the same phase:

Exchange bias or exchange anisotropy occurs in bilayers of magnetic materials where the hard magnetization behavior of an antiferromagnetic thin film causes a shift in the soft magnetization curve of a ferromagnetic film. The exchange bias phenomenon is of tremendous utility in magnetic recording, where it is used to pin the state of the readback heads of hard disk drives at exactly their point of maximum sensitivity; hence the term "bias."

<span class="mw-page-title-main">Bismuth telluride</span> Chemical compound

Bismuth telluride is a gray powder that is a compound of bismuth and tellurium also known as bismuth(III) telluride. It is a semiconductor, which, when alloyed with antimony or selenium, is an efficient thermoelectric material for refrigeration or portable power generation. Bi2Te3 is a topological insulator, and thus exhibits thickness-dependent physical properties.

<span class="mw-page-title-main">Magnetic structure</span>

The term magnetic structure of a material pertains to the ordered arrangement of magnetic spins, typically within an ordered crystallographic lattice. Its study is a branch of solid-state physics.

In magnetism, a nanomagnet is a nanoscopic scale system that presents spontaneous magnetic order (magnetization) at zero applied magnetic field (remanence).

Spin engineering describes the control and manipulation of quantum spin systems to develop devices and materials. This includes the use of the spin degrees of freedom as a probe for spin based phenomena. Because of the basic importance of quantum spin for physical and chemical processes, spin engineering is relevant for a wide range of scientific and technological applications. Current examples range from Bose–Einstein condensation to spin-based data storage and reading in state-of-the-art hard disk drives, as well as from powerful analytical tools like nuclear magnetic resonance spectroscopy and electron paramagnetic resonance spectroscopy to the development of magnetic molecules as qubits and magnetic nanoparticles. In addition, spin engineering exploits the functionality of spin to design materials with novel properties as well as to provide a better understanding and advanced applications of conventional material systems. Many chemical reactions are devised to create bulk materials or single molecules with well defined spin properties, such as a single-molecule magnet. The aim of this article is to provide an outline of fields of research and development where the focus is on the properties and applications of quantum spin.

Uranium monosulfide (US) is an inorganic chemical compound of uranium and sulfur.

A domain wall is a term used in physics which can have similar meanings in magnetism, optics, or string theory. These phenomena can all be generically described as topological solitons which occur whenever a discrete symmetry is spontaneously broken.

Samaresh Mitra is an Indian bioinorganic chemist and an INSA Senior Scientist at the Indian Institute of Chemical Biology (IICB). He is known for his research on inorganic paramagnetic complexes and low-symmetry transition metal complexes. He is an elected fellow of the Indian National Science Academy, the National Academy of Sciences, India and the Indian Academy of Sciences. The Council of Scientific and Industrial Research, the apex agency of the Government of India for scientific research, awarded him the Shanti Swarup Bhatnagar Prize for Science and Technology, one of the highest Indian science awards, in 1983, for his contributions to chemical sciences.

In solid-state physics, the kagome metal or kagome magnet is a type of ferromagnetic quantum material. The atomic lattice in a kagome magnet has layered overlapping triangles and large hexagonal voids, akin to the kagome pattern in traditional Japanese basket-weaving. This geometry induces a flat electronic band structure with Dirac crossings, in which the low-energy electron dynamics correlate strongly.

Magnetic 2D materials or magnetic van der Waals materials are two-dimensional materials that display ordered magnetic properties such as antiferromagnetism or ferromagnetism. After the discovery of graphene in 2004, the family of 2D materials has grown rapidly. There have since been reports of several related materials, all except for magnetic materials. But since 2016 there have been numerous reports of 2D magnetic materials that can be exfoliated with ease just like graphene.

Mohindar Singh Seehra is an Indian-American Physicist, academic and researcher. He is Eberly Distinguished Professor Emeritus at West Virginia University (WVU).

<span class="mw-page-title-main">Manganese arsenide</span> Chemical compound

Manganese arsenide (MnAs) is an intermetallic compound, an arsenide of manganese. It forms ferromagnetic crystals with hexagonal (NiAs-type) crystal structure, which convert to the paramagnetic orthorhombic β-phase upon heating to 45 °C (113 °F). MnAs has potential applications in spintronics, for electrical spin injection into GaAs and Si based devices.

References

  1. 1 2 Goncharuk, L V; Lukashenko, G M (12 April 1973). "Thermodynamic properties of the chromium telluride Cr2Te3". Soviet Powder Metallurgy and Metal Ceramics. 13 (9): 726–728. doi:10.1007/BF00797718. S2CID   97609076.
  2. Viswanathan, R; Sai Baba, M; Lakshmi Narasimhan, T S; Balasubramanian, R; Darwin Albert Raj, D; Mathews, C K (2 November 1993). "Thermochemistry of metal-rich chromium telluride and its role in fuel-clad chemical interactions". Journal of Alloys and Compounds. 206: 201–210. doi:10.1016/0925-8388(94)90036-1.
  3. Ramasamy, Karthik; Mazumdar, Dipanjan; Bennett, Robert D; Gupta, Arunava (2012). "Syntheses and magnetic properties of Cr2Te3 and CuCr2Te4 nanocrystals". Chemical Communications. 48 (45): 5656–8. doi:10.1039/C2CC32021E. PMID   22549795.
  4. Roy, Anupam; Guchhait, Samaresh; Dey, Rik; Pramanik, Tanmoy; Hsieh, Cheng-Chih; Rai, Amritest; Banerjee, Sanjay R (7 April 2015). "Perpendicular Magnetic Anisotropy and Spin Glass-like Behavior in Molecular Beam Epitaxy Grown Chromium Telluride Thin Films". ACS Nano. 9 (4): 3772–3779. arXiv: 1509.08140 . Bibcode:2015arXiv150908140R. doi:10.1021/nn5065716. PMID   25848950. S2CID   16563479.
  5. Liu, Yu; Petrovic, C (12 Mar 2018). "Critical behavior of quasi-two-dimensional weak itinerant ferromagnet trigonal chromium telluride Cr0.62Te". Physical Review B. 96 (13): 134410. arXiv: 1803.04482 . doi:10.1103/PhysRevB.96.134410. S2CID   119099203.
  6. Pramanik, Tanmoy; Roy, Anupam; Dey, Rik; Rai, Amritesh; Guchhait, Samaresh; Mova, Hema CP; Hsieh, Cheng-Chih; Banerjee, Sanjay K (2017). "Angular dependence of magnetization reversal in epitaxial chromium telluride thin films with perpendicular magnetic anisotropy". Journal of Magnetism and Magnetic Materials. 437: 72–77. arXiv: 1705.03121 . Bibcode:2017JMMM..437...72P. doi:10.1016/j.jmmm.2017.04.039. S2CID   119359926.
  7. Nogami, Minoru (1 Jan 1966). "Hall Effect in Chromium Telluride". Japanese Journal of Applied Physics. 5 (2): 134–137. Bibcode:1966JaJAP...5..134N. doi:10.1143/JJAP.5.134. S2CID   94817212.