Chromyl fluoride

Last updated
Chromyl fluoride
Chromyl-fluoride-2D.svg
Names
IUPAC name
Difluoro(dioxo)chromium
Other names
Chromyl Fluoride, Chromium Difluoride Dioxide
Identifiers
3D model (JSmol)
ChemSpider
EC Number
  • 232-137-9
PubChem CID
UNII
  • InChI=1S/Cr.2FH.2O/h;2*1H;;/q+2;;;;/p-2 X mark.svgN
    Key: FRLBLFFATGQISB-UHFFFAOYSA-L X mark.svgN
  • InChI=1/Cr.2FH.2O/h;2*1H;;/q+2;;;;/p-2/rCrF2O2/c2-1(3,4)5
    Key: FRLBLFFATGQISB-UNDMLHRZAG
  • O=[Cr](=O)(F)F
Properties
CrO2F2
Molar mass 121.991 g·mol−1
AppearanceViolet-red crystals
Melting point 31.6 °C (88.9 °F; 304.8 K)
Boiling point 30 °C (86 °F; 303 K) [1] Sublimes
Structure
monoclinic
P21/c, No. 14
C2v
4
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
Oxidant
Related compounds
Related compounds
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Chromyl fluoride is an inorganic compound with the formula Cr O 2 F 2. It is a violet-red colored crystalline solid that melts to an orange-red liquid. [2]

Contents

Structure

The liquid and gaseous CrO2F2 have a tetrahedral geometry with C2v symmetry, much like chromyl chloride. [3] Chromyl fluoride dimerizes via fluoride bridges (as O2Cr(μ-F)4CrO2) in the solid state, crystallizing in the P21/c space group with Z = 4. The Cr=O bond lengths are about 157  pm, and the CrF bond lengths are 181.7, 186.7, and 209.4 pm. Chromium resides in a distorted octahedral position with a coordination number of 6. [4]

History and preparation

Pure chromyl fluoride was first isolated in 1952 as reported by Alfred Engelbrecht and Aristid von Grosse. [5] It was first observed as red vapor in the early 19th century upon heating a mixture of fluorspar (CaF2), chromates, and sulfuric acid. These red vapors were initially thought to be CrF6, although some chemists assumed a CrO2F2 structure analogous to CrO2Cl2. [5] The first moderately successful synthesis of chromyl fluoride was reported by Fredenhagen who examined the reaction of hydrogen fluoride with alkali chromates. A later attempt saw von Wartenberg prepare impure CrO2F2 by treating chromyl chloride with elemental fluorine. [6] Another attempt was made by Wiechert, who treated HF with dichromate, yielding impure liquid CrO2F2 at 40 °C.

Engelbrecht and von Grosse's synthesis of CrO2F2, and most successive syntheses, involve treating chromium trioxide with a fluorinating agent: [5]

CrO3 + 2 HF → CrO2F2 + H2O

The reaction is reversible, as water will readily hydrolyze CrO2F2 back to CrO3.

The approach published by Georg Brauer in the Handbook of Preparative Inorganic Chemistry [1] drew on von Wartenberg's approach [6] of direct fluoridation:

CrO2Cl2 + F2 → CrO2F2 + Cl2

Other methods include treatment with chlorine fluoride, carbonyl fluoride, or some metal hexafluorides:

CrO3 + 2 ClF → CrO2F2 + Cl2 + O2
CrO3 + COF2 → CrO2F2 + CO2
CrO3 + MF6 → CrO2F2 + MOF4 (M = Mo, W)

The last method involving the fluorides of tungsten and molybdenum are reported by Green and Gard to be very simple and effective routes to large quantities of pure CrO2F2. [2] They reported 100% yield when the reactions were conducted at 120 °C. As expected from the relative reactivities of MoF6 and WF6, the molybdenum reaction proceeded more readily than did the tungsten. [7]

Reactions

Chromyl fluoride is a strong oxidizing agent capable of converting hydrocarbons to ketones and carboxylic acids. It can also be used as a reagent in the preparation of other chromyl compounds. [2] Like some other fluoride compounds, CrO2F2 reacts with glass and quartz, so silicon-free plastics or metal containers are required for handling the compound. Its oxidizing power in inorganic systems has also been explored. [8] Chromyl fluoride can exchange fluorine atoms with metal oxides.

CrO2F2 + MO → MF2 + CrO3

where M is a metal. Chromyl fluoride also converts the oxides of boron and silicon to their fluorides. [8]

Chromyl fluoride reacts with alkali and alkaline earth metal fluorides in perfluoroheptane (solvent) to produce orange-colored tetrafluorodioxochromates(VI): [8]

CrO2F2 + 2 MF → (M+)2[CrO2F4]2−

Chromyl fluoride also reacts with Lewis acids, drawing carboxylate ligands from organic acid anhydrides and producing an acyl fluoride byproduct: [8]

CrO2F2 + 2 (CF3CO)2O → (CF3COO)2CrO2 + 2 CF3COF

Chromyl fluoride forms adducts with weak Lewis bases NO, NO2 , and SO2.

Chromium oxytetrafluoride is prepared by fluorination of chromyl fluoride with krypton difluoride: [9]

2 CrO2F2 + 2 KrF2 → 2 CrOF4 + O2 + 2 Kr

References

  1. 1 2 Brauer, Georg (1963) [1960]. "Chromyl Fluoride CrO
    2
    F
    2
    "
    . Handbook of Preparative Inorganic Chemistry, Volume 1 (2nd ed.). Stuttgart; New York: Ferdinand Enke Verlag; Academic Press, Inc. pp. 258–259. ISBN   978-0-32316127-5.
    {{cite book}}: ISBN / Date incompatibility (help)
  2. 1 2 3 Gard, G. L. (1986) "Chromium Difluoride Dioxide (Chromyl Fluoride)," Inorg. Synth. , 24, 67-69, doi : 10.1002/9780470132555.ch20.
  3. Hobbs, W. E. (1958) "Infrared Absorption Spectra of Chromyl Fluoride and Chromyl Chloride," J. Chem. Phys. 28(6), 1220-1222, doi : 10.1063/1.1744372.
  4. Supeł, J.; Abram, U.; Hagenbach, A.; Seppelt, K. (2007) "Technetium Fluoride Trioxide, TcO3F, Preparation and Properties." Inorg. Chem. , 46(14), 5591–5595, doi : 10.1021/ic070333y.
  5. 1 2 3 Engelbrecht, A.; von Grosse, A. (1952) "Pure Chromyl Fluoride," J. Am. Chem. Soc. 74(21), 5262–5264, doi : 10.1021/ja01141a007.
  6. 1 2 von Wartenberg, H. (1941) "Über höhere Chromfluoride (CrF
    4
    , CrF
    5
    und CrO
    2
    F
    2
    )" [About higher chromium fluorides (CrF
    4
    , CrF
    5
    and CrO
    2
    F
    2
    )], Z. Anorg. Allg. Chem. [in German], 247(1-2), 135–146, doi : 10.1002/zaac.19412470112.
  7. Green, P. J.; Gard, G. L. (1977) "Chemistry of Chromyl Fluoride. 5. New Preparative routes to CrO2F2," Inorg. Chem. 16(5), 1243–1245, doi : 10.1021/ic50171a055.
  8. 1 2 3 4 Brown, S. D.; Green, P.J.; Gard, G.L. (1975) "The Chemistry of Chromyl Fluoride III: Reactions with Inorganic Systems," J. Fluorine Chem. 5(3), 203-219, doi : 10.1016/S0022-1139(00)82482-3.
  9. Christe, Karl O.; Wilson, William W.; Bougon, Roland A. (1986). "Synthesis and characterization of CrF4O, KrF2.CrF4O, and NO+CrF5O-". Inorganic Chemistry. 25 (13): 2163–2169. doi:10.1021/ic00233a013.